6

Why Likelihood?

Malcolm Forster and Elliott Sober

ABSTRACT

The likelihood principle has been defended on Bayesian grounds, on the grounds that it coincides with and systematizes intuitive judgments about example problems, and by appeal to the fact that it generalizes what is true when hypotheses have deductive consequences about observations. Here we divide the principle into two parts—one qualitative, the other quantitative—and evaluate each in the light of the Akaike information criterion (AIC). Both turn out to be correct in a special case (when the competing hypotheses have the same number of adjustable parameters), but not otherwise.

INTRODUCTION

Mark Antony said that he came to bury Caesar, not to praise him. In contrast, our goal is neither to bury the likelihood concept nor to praise it. Instead of praising it, we will present what we think is an important criticism. However, the upshot of this criticism is not that likelihood should be buried, but a justification of likelihood, properly understood.

Before we get to our criticism of likelihood, we should say that we agree with the criticisms that likelihoodists have made of Neyman-Pearson-Fisher statistics and of Bayesianism (Edwards, 1987; Royall, 1997). In our opinion, likelihood looks very good indeed when it is compared with these alternatives. However, the problem of a positive defense of likelihood remains. Royall begins his excellent book with three kinds of justification.

We would like to thank Ken Burnham, Ellery Eells, Branden Fitelson, Ilkka Kieseppä, Richard Royall, and the editors of this volume for helpful comments on an earlier draft.
He points out, first, that the likelihood principle makes intuitive sense when probabilities are all 1s and 0s. If the hypothesis H_1 says that what we observe must occur, and the hypothesis H_2 says that it cannot, then surely it is clear that the observations strongly favor H_1 over H_2. The likelihood principle seems to be an entirely natural generalization from this special case; if O strongly favors H_1 over H_2 when $P(O|H_1) = 1$ and $P(O|H_2) = 0$, then surely it is reasonable to say that O favors H_1 over H_2 if $P(O|H_1) > P(O|H_2)$.

Royall's second argument is that the likelihood ratio is precisely the factor that transforms a ratio of prior probabilities into a ratio of posteriors. This is because Bayes' theorem (and the definition of conditional probability from which it derives) entails that

$$\frac{P(H_1|O)}{P(H_2|O)} = \frac{P(O|H_1)P(H_1)}{P(O|H_2)P(H_2)}.$$

It therefore makes sense to view the likelihood ratio as a valid measure of the evidential meaning of the observations.

Royall's third line of defense of the likelihood principle is to show that it coincides with intuitive judgments about evidence when the principle is applied to specific cases. Here Royall is claiming for likelihood what philosophers typically claim in defense of the explications they recommend. For example, Rawls (1971) said of his theory of justice that his account is to be assessed by seeing whether the principles he describes have implications that coincide with our intuitive judgments about what is just and what is not in specific situations.

While we think there is value in each of these three lines of defense, none is as strong as one might wish. Even if the likelihood principle has plausible consequences in the limit case when all probabilities are 1s and 0s, the possibility exists that other measures of evidential meaning might do the same. Though these alternatives agree with likelihood in the limit case, they may disagree elsewhere. If so, the question remains as to why likelihood should be preferred over these other measures. As for Royall's second argument, it does show why likelihood makes sense if you are a Bayesian; but for anti-Bayesians such as Royall himself (and us), a very important question remains —when the hypotheses considered cannot be assigned objective probabilities, why think that likelihood describes what the evidence tells you about them? As for Royall's third argument, our hesitation here is much like the reservations we have about the first. Perhaps there are measures other than
likelihood that coincide with what likelihood says in the cases Royall considers but disagree elsewhere.¹

In any event, friends of likelihood might want a stronger justification than the three-point defense that Royall provides. Whether there is anything more that can be said remains to be seen. In this regard, Edwards (1987, 100) endorsed Fisher's (1938) claim that likelihood should be regarded as a "primitive postulate"; it coincides with and systematizes our intuitions about examples, but nothing more can be said in its behalf. This, we should note, is often the fate of philosophical explications. If likelihood is epistemologically fundamental, then we should not be surprised to find that it cannot be justified in terms of anything that is more fundamental. It would not be an objection to the likelihood concept if it turned out to be an item of rock-bottom epistemology.

Royall follows Hacking (1965) in construing the likelihood principle as a two-part doctrine. There is first of all the idea, noted above, which we will call the qualitative likelihood principle:

(QUAL) O favors H_1 over H_2 if and only if $P(O|H_1) > P(O|H_2)$.

Notice that this principle could be expressed equivalently by saying that the likelihood ratio must be greater than unity or that the difference in likelihoods must be greater than 0.

Hacking adds to this a second and logically stronger claim—that the likelihood ratio measures the degree to which the observations favor one hypothesis over the other:

(DEGREE) O favors H_1 over H_2 to degree x if and only if O favors H_1 over H_2 and $P(O|H_1)/P(O|H_2) = x$.

¹ Here we should mention Royall's demonstration (which he further elaborates in Royall, 2001) that in a certain class of problems, a bound can be placed on the probability that the evidence will be misleading when one uses a likelihood comparison to interpret it. That is, for certain types of competing hypotheses H_i and H_j, if H_i is true, a bound can be placed on the probability that one's data will be such that $P(\text{Data}|H_i) < P(\text{Data}|H_j)$. We agree with Royall that this is welcome news, but we do not think that it shows that a likelihood comparison is the uniquely correct way to interpret data. The question remains whether other methods of interpreting data have the same property. Furthermore, we think it is important to recognize a point that Royall (forthcoming) makes in passing: that it is no criticism of likelihood that it says that a false hypothesis is better supported than a true one when the data are misleading. In fact, this is precisely what likelihood should say, if likelihood faithfully interprets what the data indicate; see Sober (1988, 172–83) for discussion.
Obviously, (DEGREE) includes (QUAL) as a special case, but not conversely. However, even if (QUAL) were correct, a further argument would be needed to accept (DEGREE). Why choose the likelihood ratio, rather than the difference, or some other function of likelihoods, as one's measure of strength of evidence? There are many alternatives to consider, and the choice makes a difference because pairs of measures frequently fail to be ordinally equivalent (see Fitelson, 1999). Consider, for example, the following four likelihoods:

\[
P(O_1 | H_1) = .09, \quad P(O_1 | H_2) = .02
\]
\[
P(O_2 | H_3) = .8, \quad P(O_2 | H_4) = .3.
\]

If we measure strength of evidence by the ratio measure, we have to say that \(O_1 \) favors \(H_1 \) over \(H_2 \) more strongly than \(O_2 \) favors \(H_3 \) over \(H_4 \). However, if we choose the difference measure, we get the opposite conclusion. Royall does not take up the task of defending (DEGREE). Our discussion in what follows will focus mainly on the principle (QUAL), but we will have some comments on the principle (DEGREE) as well.

There is a third element in Royall's discussion that we should mention, one that differs from both (QUAL) and (DEGREE). This is his criterion for distinguishing \(O \) weakly favoring \(H_1 \) over \(H_2 \) from \(O \) strongly favoring \(H_1 \) over \(H_2 \):

\[
(R) \quad O \text{ strongly favors } H_1 \text{ over } H_2 \text{ if and only if } O \text{ favors } H_1 \text{ over } H_2 \text{ and } P(O|H_1)/P(O|H_2) > 8.
\]

\[
O \text{ weakly favors } H_1 \text{ over } H_2 \text{ if and only if } O \text{ favors } H_1 \text{ over } H_2 \text{ and } P(O|H_1)/P(O|H_2) \leq 8.
\]

As was true of (DEGREE), principle (R) includes (QUAL) as a special case, but not conversely. Furthermore, (R) and (DEGREE) are logically independent. Royall recognizes that the choice of cutoff specified in (R) is conventional. In what follows, our discussion of (QUAL) will allow us to make some critical comments on (R) as well.

One of Royall's simple but extremely important points is that it is essen-

2. Even if we restrict (DEGREE) to comparisons of hypotheses relative to the same data, it remains true that (DEGREE) is logically stronger than (QUAL). In our example, the ratio and difference measures disagree even when \(O_1 = O_2 \).
tial to distinguish carefully among three questions that you might want to address when evaluating the testimony of the observations:

1. What should you do?
2. What should you believe?
3. What do the observations tell you about the hypotheses you're considering?

Royall argues that Neyman-Pearson statistics addresses question (1). However, if this is the question that the Neyman-Pearson approach tries to answer, then the question falls in the domain of decision theory, in which case utilities as well as probabilities need to be considered. Question (2) is the one that Bayesians address. Question (3) is different from (2) and also from (1); (3) is the proper province for the likelihood concept. Royall considers the possibility that Fisher's idea of statistical significance might be used in Neyman-Pearson statistics to address question (3). However, a good part of Royall's book is devoted to showing that the likelihoodist's answer to question (3) is better.

We will argue in what follows that (3) needs to be subdivided. There are at least two different questions you might ask about the bearing of evidence on hypotheses:

3a. What do the observations tell you about the truth of the hypotheses you're considering?
3b. What do the observations tell you about the predictive accuracy of the hypotheses you're considering?

Question (3a) is what we think Royall has in mind in his question (3). The second concept, of predictive accuracy, is something we'll discuss later. It is an important feature of this concept that a false model is sometimes more predictively accurate than a true one. The search for truth and the search for predictive accuracy are different; this is why we separate questions (3a) and (3b).

To develop these ideas, we now turn to a type of inference problem that is, we think, the Achilles' heel of the likelihood approach. This is the problem of "model selection." By a "model," we mean a statement that contains at least one adjustable parameter. Models are composite hypotheses. Consider, for example, the problem of deciding whether the dependent variable y and the independent variable x are related linearly or parabolically:
\[(\text{LIN}) \ y = a + bx + u \]
\[(\text{PAR}) \ y = a + bx + cx^2 + u. \]

In these models, \(a, b, \) and \(c \) are adjustable parameters, while \(u \) is an error term with a normal distribution with zero mean and a fixed variance. Fixing the parameter values picks out a specific straight line or a specific parabola.

How can likelihood be used to choose between these models? That is, how are we to compare \(P(\text{Data} | \text{LIN}) \) and \(P(\text{Data} | \text{PAR}) \)? As Royall says, there are no general and entirely valid solutions to the problem of assessing the likelihoods of composite hypotheses. Let us consider some alternative proposals and see how they fare. The model \(\text{LIN} \) is a family composed of the infinite set of straight lines in the \(x\)-\(y \) plane. Strictly speaking, the likelihood of \(\text{LIN} \) is an average of the likelihoods of all these straight lines:

\[P(\text{Data} | \text{LIN}) = \sum_i P(\text{Data} | L_i)P(L_i | \text{LIN}). \]

If we have no way to figure out how probable different straight lines are, conditional on \(\text{LIN} \), then we cannot evaluate the likelihood. Suppose, however, that every straight line has the same probability as every other, conditional on \(\text{LIN} \). In this case \(P(\text{Data} | \text{LIN}) = 0 \) and the same is true of \(P(\text{Data} | \text{PAR}) \) (Forster and Sober, 1994). This is an unsatisfactory conclusion, since scientists often believe that the data discriminate between \(\text{LIN} \) and \(\text{PAR} \).

3. Rosenkrantz (1977) proposed that average likelihoods (based on a uniform prior) would favor simpler models, while Schwarz (1978) provided a mathematical argument for that conclusion, together with an approximate formula (BIC, the Bayesian information criterion) for how the average likelihood depends on the maximum likelihood and the number of adjustable parameters. However, Schwarz’s derivation is suspect in examples like the one we discuss. Uniform priors are improper in the sense that the probability density cannot integrate to 1. If the density is zero, then it integrates to zero. If it is nonzero, then it integrates to infinity, no matter how small. That is, the density is improper because it cannot be normalized. For the purpose of calculating the posterior probability, this does not matter because if the density is everywhere equal to some arbitrary nonzero constant, then the posterior density of any curve is proportional to its likelihood, and the arbitrary constant drops out when one normalizes the posterior (which one should do whenever possible). So Bayesians got used to the idea that improper priors are acceptable. However, they are not acceptable for the purpose of calculating average likelihoods because there is no such thing as the normalization of likelihoods (they are not probabilities). Of course, one could instead assume that the arbitrary constant is the same for all models. Then each average likelihood is proportional to the sum (integral) of all the likelihoods. But to compare integrals of different dimensions is like comparing the length of a line with the area of a rectangle—it makes little sense when there is no principled way of specifying the units of measurement (Forster and Sober, 1994). For ex-
This example, we should mention, also illustrates a problem for Bayesianism, one that Popper (1959) noted. Because LIN is nested inside of PAR, it is impossible that \(P(\text{LIN}|\text{Data}) > P(\text{PAR}|\text{Data}) \), no matter what the data say. When scientists interpret their data as favoring the simpler model, it is impossible to make sense of this judgment within the framework of Bayesianism.\(^4\)

An alternative is to shift focus from the likelihoods of LIN and PAR to the likelihoods of L(LIN) and L(PAR). Here L(LIN) is the likeliest straight line, given the data, and L(PAR) is the likeliest parabola. The suggestion is to compare the families by comparing their likeliest special cases. The problem with this solution is that it is impossible that \(P(\text{Data}|L(\text{LIN})) > P(\text{Data}|L(\text{PAR})) \). This illustrates a general point—when models are nested, it is almost certain that more complex models will fit the data better than models that are simpler. However, scientists don’t take this as a reason to conclude that the data always favor PAR over LIN. Instead, they often observe that simplicity, and not just likelihood, matters in model selection. If L(LIN) and L(PAR) fit the data about equally well, it is widely agreed that one should prefer L(LIN).

And if LIN is compared with a polynomial that has 100 terms, scientists will say that even if L(POLY-100) fits the data much better than L(LIN) does, that still one might want to interpret the data as favoring L(LIN). Likelihood is an incomplete device for interpreting what the data say. It needs to be supplemented by due attention to simplicity. But how can simplicity be represented in a likelihood framework?

ample, if one compares the very simple model \(y = a \) with \(y = a + bx \), and then with \(y = a + 2bx \), the added \(b \)-dimension is scaled differently. So, when one integrates the likelihood function over parameter space, the result is different (unless one can justify the formula \(y = a + bx \) uniquely as the principled choice).

An uneasiness about Schwarz’s derivation has since led some Bayesians to invent other ways to compute average likelihoods (see Wasserman, 2000, for an easy technical introduction to the Bayesian literature). One proposal, which also gets around our objection, is the theory of “intrinsic Bayes factors” due to Berger and Pericchi (1996). The idea is to “preconditionize” on each datum in the data set and average the results to obtain a well-conditioned and “approximately” uniform “prior.” Then the average likelihoods are nonzero and can be compared straightforwardly. First, we note that this is not a vindication of Schwarz’s argument because it yields a different criterion. Second, this solution appears to us to be unacceptably ad hoc as well.

\(^4\) Bayesians sometimes address this problem by changing the subject. If we define PAR* to be the family of parabolas that does not include straight lines (i.e., \(c \) is constrained to be nonzero), then the axioms of probability do not rule out the possibility that LIN might have a higher probability than PAR*. However, it remains unclear what reason a Bayesian could have for thinking that \(P(c = 0) > P(c \neq 0) \).
We think that it cannot, at least not when simplicity is a consideration in model selection.5 This is our criticism of likelihood. However, there is another inferential framework in which the role of simplicity in model selection makes perfect sense. This framework was proposed by statistician H. Akaike (one of his earliest articles is Akaike, 1973; one of his latest is Akaike, 1985; see Sakamoto, Ishiguro, and Kitagawa, 1986, for a thorough introduction to his method, and Burnham and Anderson, 1998, for some scientific applications of Akaike's approach). The Akaike framework assumes that inference has a specific goal; the goal is not to decide which hypothesis is most probably true, or most likely, but to decide which will be most predictively accurate.

What does it mean to talk about the predictive accuracy of a model, like LIN? Imagine that we sample a set of data points from the true underlying distribution and use that data to find the best-fitting straight line, namely L(LIN). We then use L(LIN) to predict the location of a new set of data. We draw these new data and see how close L(LIN) comes to predicting their values. Imagine repeating this process many times, using an old data set to find L(LIN) and then using that fitted model to predict new data. The average closeness to new data (as measured by the per-datum log-likelihood) is LIN's predictive accuracy. If the mean function for the true underlying distribution is in fact linear, LIN may do poorly on some of these trials, but on average it will do well. On the other hand, if the mean function for the true underlying distribution is highly nonlinear, LIN may do fairly well occasionally, but on average it will do a poor job of predicting new data. Obviously, the predictive accuracy of a model depends on what the true underlying distribution is. However, in making an inference, we of course don't know in advance what the truth is. Maximizing predictive accuracy might be a sensible goal, but so far it appears to be epistemologically inaccessible. Is it possible to figure out, given the single data set before us, how predictively accurate a model is apt to be?

Akaike proved a surprising theorem,6 one that shows that predictive ac-

5 In some inference problems, simplicity or parsimony can be shown to be relevant because simplicity influences likelihood. Phylogenetic inference is a case in point; see Sober (1988) for discussion.

6 Akaike's theorem rests on some assumptions: a Humean "uniformity of nature assumption" (that the old and new data sets are drawn from the same underlying distribution), and a surprisingly weak "regularity" assumption that implies (among other things) that the true distribution of the parameter estimates, when the number of data \(n \) is sufficiently large, is a multivariate normal distribution with a covariance matrix whose terms are inversely proportional to \(n \). The central limit theorems in their various forms (Cramér, 1946) entail a similar result for the distributions of the sums of random variables. The full details of the normality assumption are complex, and we refer the interested reader to Sakamoto, Ishiguro, and Kit-
Why Likelihood?

accuracy is epistemologically accessible. He showed that an unbiased estimate of a model's predictive accuracy can be obtained by taking the log-likelihood of its likeliest case, relative to the data at hand and correcting that best-case likelihood with a penalty for complexity: an unbiased estimate of the predictive accuracy of model M is equal to $\log P[\text{Data} | L(M)] - k$, where k is the number of adjustable parameters in the model (see Forster, 1999, for a more exact description of the meaning of k). LIN contains 2 adjustable parameters, while PAR contains 3, and POLY-100 contains 101. Akaike's theorem says that likelihood provides information about the predictive accuracy of a model, but the information is always distorted. Likelihood is like a bathroom scale that always tells you that you are lighter than you are. Its outputs are evidentially relevant, but they need to be corrected.

We now can explain our earlier remark that a true model can be less predictively accurate than a false one. Suppose you know that the relationship of x and y is nonlinear and parabolic. It still can make sense to use LIN to predict new data from old, if $L(\text{LIN})$ fits the data about as well as $L(\text{PAR})$. The truth can be a misleading predictor. It is a familiar fact that idealizations are valuable in science when a fully realistic model is either unavailable or mathematically intractable. The Akaike framework reveals an additional virtue that idealizations can have—even when we possess a fully realistic (true) model, a (false) idealization can be a better predictor (Forster and Sober, 1994; Sober, 1999; Forster, 2000a).

As we mentioned earlier, model selection is the Achilles' heel of likelihood. Yet Akaike's theorem describes a general circumstance in which likelihood provides an unbiased estimate of a model's predictive accuracy—when two models have the same number of parameters, the likelihoods of their likeliest cases provide an unbiased indication of which can be expected to be more predictively accurate. Likelihood needn't be viewed as a primitive postulate. We needn't resign ourselves to the idea that we value likelihood for its own sake. If predictive accuracy is your goal, likelihood is one relevant consideration because it helps you estimate a model's predictive accuracy.

gawa (1986), which provides the simplest technical introduction to these details. Akaike's result can also hold exactly for small sample sizes when additional conditions are met (see, e.g., Kieseppä, 1997).

7. The number of adjustable parameters should also include the variance of the (assumed) error distribution and any other free parameters used to define it. However, we have chosen to ignore this complication because it is not relevant to the main point of this essay.

8. Recall that we defined "model" as a statement containing at least one adjustable parameter. Our point about idealizations would not be correct for statements containing no adjustable parameter.
And when the models under consideration are equally complex, likelihood is the only thing you need to consider. Likelihood is a means to an end and is justified relative to that end.9

Not only does the qualitative likelihood principle receive a circumscribed justification from the Akaike framework; we can use Akaike's theorem to evaluate the (DEGREE) and (R) principles as well. The theorem provides an unbiased criterion for when one model will be more predictively accurate than another:

\[M_1 \text{ is estimated to be more predictively accurate than } M_2 \text{ if and only if } \log P[D|L(M_1)] - k_1 > \log P[D|L(M_2)] - k_2. \]

This can be rewritten as

\[M_1 \text{ is estimated to be more predictively accurate than } M_2 \text{ if and only if } \frac{P[D|L(M_1)]}{P[D|L(M_2)]} > \exp(k_1 - k_2). \]

If \(k_1 = k_2 \), this can be stated equivalently by saying that the likelihood ratio must be greater than 1 or by saying that the difference in log-likelihoods must be greater than 0.10 However, if \(k_1 \neq k_2 \), a ratio criterion can be formulated, but there is no equivalent criterion that can be stated purely in terms of likelihood differences.11 This helps distinguish some measures of strength of evidence from others, as (DEGREE) requires.

9 Our point is in accord with Akaike's (1973) observation that AIC is an "extension of the maximum likelihood principle."

10 The most important special case here is when \(k_1 = 0 = k_2 \), which is just the nonmodel selection problem of comparing two specific point hypotheses. In this case, there are many independent reasons in favor of a likelihood ratio law of this form, including the classical Neyman-Pearson theorems that prove that a decision rule based on such a rule is the most powerful test of its size (see Hogg and Craig, 1978, 246). The limitation of these theorems is that they presuppose a very simple 0 or 1 measure of discrepancy between a hypothesis and the truth. Lele (2004 [chapter 7 of this volume]) develops an alternative analysis based on more interesting discrepancy measures, which also speaks in favor of the likelihood ratio criterion.

11 If it were granted that the degree of evidence depends only on the likelihoods in some way, then there would be an independent reason for not using the difference measure. For in the case of continuous variables, likelihoods are equal to the probability density of an observed quantity \(x \) times an arbitrary multiplicative constant (Edwards, 1987). To understand the reason for this arbitrary factor, consider a transformation of the variable \(x \), \(x' = f(x) \), for some one-to-one function \(f \). Probabilities are invariant under such transformations, so con-
Similar remarks apply to Royall's principle (R). If \(k_1 = k_2 \), Royall's stipulation in (R) of the number 8 as the cutoff separating strong from weak evidence favoring \(H_1 \) over \(H_2 \) is a possibility (though other cutoffs are possible as well). However, when \(\exp(k_1 - k_2) > 8 \), the difference between strong and weak evidence cannot be defined by the proposed cutoff of 8. Akaike's theorem does not determine how the distinction between weak and strong evidence should be drawn, but it does restrict the search to criteria defined in terms of likelihood ratios.

Our defense of (DEGREE) is not a defense of everything it implies. Remember that (DEGREE) equates the degree to which \(O \) favors \(H_1 \) over \(H_2 \) with the likelihood ratio, and this implies two things: (a) that the likelihood ratio is the correct way of capturing how the degree of fit between \(O \) and \(H_1 \) and between \(O \) and \(H_2 \) influences the degree to which \(O \) favors \(H_1 \) over \(H_2 \), and (b) that nothing else influences the degree to which \(O \) favors \(H_1 \) over \(H_2 \). Implication (a) rules out the possibility that any other measures of fit, such as the sum of the absolute values of the residuals between the data and the mean curve of the hypothesis, affect the relative degree of support. For AIC, \(H_1 \) and \(H_2 \) are the likeliest hypotheses \(L(M_1) \) and \(L(M_2) \), and the degree to which \(O \) favors \(L(M_1) \) over \(L(M_2) \) depends on the likelihood ratio and \(\exp(k_1 - k_2) \). The latter term corrects for an expected overfitting bias, which would otherwise provide the more complex model with an unfair advantage.\(^{12} \) AIC therefore agrees with implication (a) of (DEGREE), but denies implication (b). This leads us to the following general principle:

\[\text{consider the probability that } x \text{ is observed in a given interval around } x. \text{ This probability is equal to the area under the density curve within this interval. If the interval is small, then the area is equal to the density at } x \text{ times the width of the interval. In order for the area to be invariant under any transformation of } x, \text{ the density must change whenever the length of the interval changes. So densities, or the differences in densities, fail the requirement of language invariance. On the other hand, the differences of the probabilities is invariant, but it is proportional to the length of the small interval around } x, \text{ which is arbitrary (see Forster, 1995, for further discussion). Therefore the difference measure is caught in a dilemma—it either fails the desideratum of language invariance or it contains an arbitrary multiplicative factor. Fortunately, the arbitrary constant drops out when we take the ratio of the likelihoods, or any function of the likelihood ratio, so it is both language-invariant and nonarbitrary. As far as we can see, this class of measures is unique in this regard, at least among likelihood measures.} \]

12. The degree to which \(O \) favors \(H_1 \) over \(H_2 \) may also be a function of the number of data \(n \), even though this is a fact about the data and is not a function of the likelihood ratio. We regard this kind of information as akin to the difference \(k_1 - k_2 \) because neither of them measures the fit of \(H_1 \) and \(H_2 \) to the data \(O \).
(DEGREE Prime) The likelihood ratio is the correct way of capturing how the degree of fit between \(O \) and \(H_1 \) and between \(O \) and \(H_2 \) influences the degree to which \(O \) favors \(H_1 \) over \(H_2 \).\(^{13}\)

In the special case of comparing simple hypotheses \(H_1 \) and \(H_2 \), (DEGREE Prime) reduces to (DEGREE).

The argument for this principle arises out of the form of AIC—the fact that AIC can be expressed as \(O \) favors \(L(M_1) \) over \(L(M_2) \) if and only if \(P(O \mid L(M_1)) / P(O \mid L(M_2)) > K \). However, we have to admit that our argument is only as strong as its premises, and not every statistician will agree that AIC stands on firm foundations.\(^{14}\) In fact, the argument really depends on the premise that model selection should have this form for some \(K \). The exact value of \(K \) does not matter. As it turns out, almost all model selection criteria in the literature can be expressed in this basic form, including BIC (Schwarz, 1978), variations on AIC (see, e.g., Hurvich and Tsai, 1989), posterior Bayes factors (Aitkin, 1991), and an important class of Neyman-Pearson hypothesis tests.\(^{15}\) Moreover, all of these criteria apply to a wide variety of statistical applications, including contingency table analysis, regression models, analysis of variance, and time series. There are many independent arguments for (DEGREE Prime).

But is that the end of the debate? One still might dream of a unified perspective from which everything else follows, including a corrected version of Royall's distinction between weak and strong evidence. Akaike's frame-

13. Note that (DEGREE Prime) applies only when the likelihoods of \(H_1 \) and \(H_2 \) are well defined.

14. For example, it is often charged that AIC is inconsistent (but see Forster, 2000b, for a defense of AIC against this charge). Or it might be maintained that the goal of predictive accuracy is not the primary consideration at hand.

15. There are two cases to consider. In the case of comparing simple hypotheses \(H_0 \) and \(H_1 \), where \(H_0 \) is the null hypothesis, a best test of size \(\alpha \) is by definition (Hogg and Craig, 1978, 243) a test with a critical region \(C \) of size \(\alpha \) such that for any other critical region \(A \) of size \(\alpha \), \(P(C \mid H_1) = P(A \mid H_1) \). That is, a best test maximizes the probability of rejecting \(H_0 \) when \(H_1 \) is true. Hogg and Craig (1978, 246) show that for any best test with critical region \(C \), there is a number \(K \) such that a data set lies within \(C \) if and only if the likelihood ratio of \(H_1 \) to \(H_0 \) is greater than or equal to \(K \). These are the Neyman-Pearson theorems mentioned in note 10. In the case of comparing a simple hypothesis \(H_0 \) against a composite alternative \(M \), a uniformly most powerful critical region of size \(\alpha \) is by definition (Hogg and Craig, 1978, 252) a region \(C \) that provides a best test for comparing \(H_0 \) against any point hypothesis in \(M \). So if a uniformly most powerful test exists, the test between \(H_0 \) and any representative of \(M \) is a likelihood ratio test. In examples in which the assumptions of Akaike’s theorem hold (see note 6) and the composite hypothesis has one adjustable parameter, a uniformly most powerful Neyman-Pearson test with \(\alpha = .05 \) effectively trades off the maximum log-likelihood against simplicity to a degree somewhere between AIC and BIC (Forster, 2000b).
work goes one step beyond Fisher’s view that likelihood is fundamental, but one still might wish for more.

6.1 Commentary

Michael Kruse

Likelihood is a key concept for classical, Bayesian, and likelihoodist statistics alike. Yet there is a long-running debate over the proper role of likelihood in statistics, at the center of which is the question of _evidential meaning:_

Q: What does outcome _x_ tell us about the hypotheses we are considering?

"Why Likelihood?" offers an enlightening perspective on this debate. An interesting result, I think, is that it leads us to _reject_ one presumption of the debate, viz., that there is some _single correct_ concept of evidential meaning.

One answer to Q is that _all_ the information in _x_ relevant to evaluating _H_1 against _H_2 is in the likelihoods, _P(x|H_1_1) and _P(x|H_2)_. If we measure the evidence _x_ for _H_1 against _H_2 with the _likelihood ratio_, _LR = P(x|H_1)/P(x|H_2)_, we get Forster and Sober’s stronger principle _DEGREE_. To learn what _x_ tells us about _H_1 and _H_2, look no further than _LR_.

In contrast, classical statistical methods (e.g., NP testing) treat _LR_ as only _part_ of what _x_ tells us about _H_1 against _H_2. Instead, these methods require that we consider both the actual and _possible_ values of _LR_, the latter of which depend on what _could have_ but _actually didn’t_ happen.

I detect more than a whiff of a primitive philosophical disagreement. In this, and not surprisingly, much of the debate consists of appeals to intuitions about what is or is not relevant information. Forster and Sober give us a more productive way to frame the debate by subdividing Q in terms of _inferential aims_, i.e., what we want from those hypotheses. Doing this breaks up Q into distinct questions, three of which are:

Q1 What does _x_ tell us about the _predictive accuracies_ of _H_1 and _H_2?
Q2 What does _x_ tell us about the _probabilities_ of _H_1 and _H_2?
Q3 What does _x_ tell us about the _truth values_ of _H_1 and _H_2?

I thank Elliott Sober for his useful comments.

16. Here we are concerned only with what the _outcome_ tells us, not _other_ sources of information that may influence our inferences (e.g., prior probabilities).

17. Examples of these are Royall’s three points in favor of likelihood that Forster and Sober discuss.