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� Darwin and contemporary biologists argue that all present-day life traces back to one or a few common ancestors.
� We investigate the relationship of different evolutionary processes to the hypothesis of common ancestry.
� We describe how different evolutionary processes confer different probabilities on the common ancestry thesis.
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a b s t r a c t

Darwin and contemporary biologists argue that all present-day life traces back to one or a few common
ancestors. Here we investigate the relationship of different evolutionary processes to this hypothesis of
common ancestry. We identify the property of an evolutionary process that determines what its
probabilistic impact on the common ancestry thesis will be. The point of this exercise is to understand
how the parts of Darwin's powerful theory fit together, not to call into question common ancestry or
natural selection, since these two pillars of Darwin's theory enjoy strong support.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Darwin's views about natural selection (including his claim that
selection is the main but not the exclusive cause of evolution) and his
thesis about common ancestry (that everything now alive on earth
traces back to one or a few original progenitors) are logically
independent of each other (Mayr, 2007), but that did not prevent
Darwin from illustrating them both in the single figure that appears in
the Origin of Species. That diagram (which occurs on a fold-out page
immediately following p. 116 of Darwin, 1859) is redrawn below in
Fig. 1; there are 11 ancestors (labeled A, B, C,…, L) at the bottom of the
page and 15 descendants at the top. Those 15 trace back to only 3 of
the original 11. Why did the lineages stemming from 8 of the original
11 go extinct? Darwin's answer is natural selection. The horizontal
axis in Darwin's figure represents a quantitative phenotype. Notice
that when an ancestor produces several offspring in Darwin's drawing,

the offspring with extreme phenotypes are usually the ones that go on
to have offspring of their own; those with intermediate phenotypes
usually do less well. This is Darwin's principle of divergence. This
selection process not only causes organisms in the present to trace
back to a small number of ancient ancestors; it also serves to increase
life's diversity. The 15 descendants at the top of the diagram have
more horizontal spread than the 11 at the bottom. Darwin says that
his principle of divergence describes what “tends” to happen in
processes of natural selection, not what happens invariably. This is
why he includes in his figure the lineage stemming from F. F and its
present-day descendant have the same phenotype.

Darwin (1859, pp. 111–126) gives different characterizations of his
principle of divergence (Kohn, 2009). In addition to the idea that
selection favors extreme phenotypes, he says that selection favors
parents that diversify their offspring and that it favors organisms that
diversify their own internal structure. These three formulations are
logically independent of each other. Current biology views two of
them with reserve. Selection often favors extreme phenotypes, but
it also often favors intermediate phenotypes; a classic example of
the latter is birth weight in humans (Bell, 1997). Natural selection
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sometimes is disruptive and sometimes it is stabilizing; there is no a
priori reason to think that one is common and the other rare. A similar
reservation can be lodged against the idea that selection favors
organisms that exhibit greater internal diversity. Selection sometimes
promotes increased division of labor (specialization of parts), but often
it does not. Darwin (1859, p. 148) notes in his discussion of parasites
that selection sometimes favors simplification; parasites often lose
structures that were present in their free-living ancestors. The idea in
Darwin's trifecta that corresponds most closely to current biology is
his suggestion that parents that diversify their offspring will be
favored over parents that do not. This idea is alive and well in disc-
ussions of the evolution of sexual reproduction (Burt, 2000); organ-
isms that reproduce sexually will do better than organisms that
reproduce asexually when the environment is sufficiently unpre-
dictable.

The question we will investigate here—how different evolutionary
processes (including different forms of natural selection) confer
probabilities on the thesis of common ancestry–is distinct from the
question of which observations lend strong support to natural
selection and which do so for common ancestry. Darwin addresses
this last question in the following passage from the Origin:

… adaptive characters, although of the utmost importance to the
welfare of the being, are almost valueless to the systematist. For
animals belonging to two most distinct lines of descent, may
readily become adapted to similar conditions, and thus assume a
close external resemblance; but such resemblances will not reveal–
will rather tend to conceal their blood-relationship to their proper
lines of descent (Darwin, 1859, p. 427).

Darwin's idea is that adaptive similarities provide scant evi-
dence for common ancestry, whereas similarities that are neutral
or deleterious provide evidence that is more weighty. As noted by
Sober and Steel (2014), a simple likelihood comparison supports
Darwin's claim about adaptive similarities under a rather general
model of evolution. Supposing two extant taxa A and B share a
trait x, let us consider the likelihood ratio LRCA=SA of the following
two hypotheses:

(CA) Taxa A and B have a most recent common ancestor that existed t
units of time in the past, trait xwas present in this ancestor with
some probability p, and the trait's evolution down each of the
two lineages leading from that ancestor to A and to B followed
continuous-time stochastic processes.

(SA) Taxa A and B do not trace back to a common ancestor, state x
was independently present in these two taxa with probabil-
ity p at t time units in the past, and the trait's subsequent
evolution down these two lineages to the present followed
continuous-time stochastic processes.

Sober and Steel point out that if t is small, then:

LRCA=SA ¼ PrðA; B share trait xjCAÞ
PrðA; B share trait xjSAÞ � p=p2 ¼ 1=p:

If an adaptive trait has a higher value for p than a neutral trait
does, and if a neutral trait has a higher value for p than a
deleterious trait possesses, then the value of LRCA=SA is higher for
neutral and deleterious traits than it is for traits that are adaptive,
thus vindicating Darwin's statement about adaptive similarities.
This argument has two limitations: it requires t to be small and it
considers only two taxa. While the value of LRCA=SA is not the main
subject of the present paper, we expand on the 1=p argument by
providing an exact expression for the likelihood ratio for two taxa
when the evolving trait has two states; we also provide a bound
on the ratio that applies for any number of taxa when the
underlying continuous-time stochastic process is a stationary
Markov process. Proofs for both are given in the Appendix.

Proposition 1. For the evolution of a trait under a stationary
continuous-time Markov process on two states:

LRCA=SA ¼ 1þ 1
p
�1

� �
e�2r�t ;

where r is a rate parameter associated with the model. Moreover, if n
present taxa have their most recent common ancestor at t time units

Fig. 1. The only illustration in Darwin's Origin represents both common ancestry and the principle of divergence.
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in the past, then:

LRCA=SAZ1þ 1
pn�1�1

� �
e�nr�t :

Notice that the right-hand side of the equality and the right-hand
side of the inequality both increase as p is made small.

2. Natural selection and common ancestry

In his discussion of the principle of divergence, Darwin describes
how natural selection operates, and argues that it will have the result
that all present-day organisms trace back to one or a few original
progenitors. We will represent this conclusion about common ances-
try by saying that i has a small value in CAi. CA1 means that all current
life traces back to a single common ancestor, CA2 says that all life
traces back to two common ancestors (but to no fewer), and so on.We
do not doubt that selection, as Darwin conceives it, can have the result
that i is small in CAi. Our question is whether the operation of natural
selection makes it probable that i is small in CAi and whether non-
selective processes are able to do the same.

The epistemological problem that we will investigate here is
the circumstances in which

For i small; PrðCAijM1Þ4PrðCAijM2Þ:

where M1 and M2 are reasonably specific models of the evolu-
tionary process. Here are the models we want to consider:

� Natural selection favoring extreme phenotypes
� Natural selection favoring intermediate phenotypes
� Natural selection that improves the average fitness of the

organisms in a population
� Drift without natural selection

In addition to determining whether i being small in CAi is more
probable under some of these models than under others, we also
want to see if some of these models make it very probable that i is
small in CAi.

In all of these models, we assume that life on earth began with
some unknown number (n) of start-ups. These need not have arisen
simultaneously. Present-day life traces back to i of these start-ups and
no fewer, where 0o irn. For each model, the probability that a start-
up has at least one descendant alive today may depend on the
characteristics (type) of that start-up; we suppose each start-up is of a
type chosen according to fixed (unknown) probability distribution.
We let s(M) denote the resulting probability that a start-up in model
M will have at least one descendant alive now (technical details are
provided in the Appendix). Between the start-ups and the present,
there can be branching, as shown in Darwin's diagram, and there also
can be reticulation (wherein branches join). Our results do not depend
on how frequently branching and reticulation occur in the descen-
dants stemming from a given start-up.

Each of the models we will consider says that start-ups occur
independently of each other, and whether a given start-up has a
descendant that is alive now is independent of whether any other
start-up does. This means that each model's chance that exactly
i¼ 0;1;…;n of the n start-ups has at least one descendant alive now
is a binomial probability with parameters n and s(M). However, the
simple binomial formula fails to condition on the event E that at least
one of these start-ups has at least one descendant alive now (i.e., that
there is life on earth now). To take account of E, we need to divide
each binomial probability by PrðEjMÞ ¼ 1�ð1�sðMÞÞn and we need to
restrict the range of i to values from 1 to n (i.e., excluding 0).

The likelihood ratio we want to consider for a pair of models M1

and M2 therefore takes the following form:

LR¼ PrðCAijM1&EÞ
PrðCAijM2&EÞ

:

For j¼ 1;2, the numerator and the denominator of LR each take
the form:

PrðCAijMj&EÞ ¼
PrðCAi&EjMjÞ

PrðEjMjÞ
¼ PrðCAijMjÞ

PrðEjMjÞ
;

where the first equality is simply a formal identity of probability
theory and the second equality holds for i40 since CAi entails E.
This leads to the following expression for the likelihood ratio:

LR¼ sðM1Þ
sðM2Þ

� �i 1�sðM1Þ
1�sðM2Þ

� �n� i 1�ð1�sðM2ÞÞn
1�ð1�sðM1ÞÞn

� �
:

Whether this likelihood ratio is greater than or less that unity depends
on the values of sðM1Þ and sðM2Þ and on whether i is much smaller
than n. Notice that LR¼ 1 when n¼ 1, for any (non-zero) values of
sðM1Þ and sðM2Þ, since CA1 occurs with probability 1 under both
models. Thus we consider only the case where n41 in the following
result, the proof of which is given in Appendix A:

Proposition 2. Suppose n41. (i) If i=nrsðM1ÞosðM2Þ then LR41.
(ii) If sðM1ÞosðM2Þr ði�1Þ=ðn�1Þ then LRo1. (iii) If sðM1ÞasðM2Þ,
and neither probability is 0 or 1, then as i increases, LR goes from
being on one side of 1 to the other exactly once.

Notice that Proposition 2(i) implies that, for strong common
ancestry (i¼1), likelihood favors the model that has the lower s-value
when for each model at least one start-up is expected to survive to the
present (i.e., n � sðM1ÞZ1 and n � sðM2ÞZ1). Part (ii) of Proposition 2
implies that when all n start-ups survive (i.e., i¼n), the model with
the higher s-value will have the higher likelihood. All three parts of
Proposition 2 are illustrated in Fig. 2. In this example, n¼100 start-
ups, sðM1Þ ¼ 0:01, and sðM2Þ ¼ 0:05.

Darwin says in the 5th edition of the Origin that his thesis that i
is small in CAi does not depend on how much bigger n is than i:

No doubt it is possible … that at the first commencement of life
many different forms were evolved; but if so, we may conclude
that only a few have left modified descendants (Darwin and
Peckham, 1959, p. 753).

This is true as far as the meaning of the thesis of common ancestry
is concerned. However, Proposition 2 shows that the relation of i to
n does affect which of two process models makes a small value for
i in CAi more probable.

Which properties of a model determine its value for s(M)? To
answer this question, we divide the time between the n start-ups

Fig. 2. Graphs of PrðCAi jM1&EÞ and PrðCAi jM2&EÞ as functions of i¼ 1;2;…, where
n¼100, sðM1Þ ¼ 0:01 and sðM2Þ ¼ 0:05.
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and the present into generations, with the start-ups occurring in
generation 0 and the present descendants being in generation T.
Let fg be the average fitness of the individuals that are alive in
generation g (g ¼ 0,...,T-1). We assume a discrete branching
process in which each individual has an independent Poisson-
distributed number of surviving offspring in the next generation;
it is left open whether the fitnesses of individuals (i.e., their
expected numbers of offspring) within each generation vary.
Appendix B provides a proof of the following result:

Proposition 3. A model's value for s(M) is fully determined by the
sequence f 0; f 1; f 2;…; f T�1, and s(M) does not further depend on how
the individual fitness values vary within any generation. Moreover,
increasing any of these f-values (singly or in combination) increases
the value of s(M).

In saying here that “variance is irrelevant”, we mean both variation
among the descendants at any given time and variation within the
descendants at any given time (if those descendants are themselves
populations). The same point holds for variation among descendants
at different times.

Proposition 3 has the following consequences:

� A selection model M1 and a drift model M2 can have the same
value for s(M), in which case PrðCAi jM1&EÞ ¼ PrðCAijM2&EÞ, for
each i40.

� Two selection models M3 (where selection favors extreme
phenotypes) and M4 (where selection favors intermediate
phenotypes) can have the same value for s(M), in which case
PrðCAijM3&EÞ ¼ PrðCAijM4&EÞ, for each i40.

Notice that we say “can”, not “must.” There is nothing intrinsic to
the distinction between selection and drift, nor to the distinction
between selection for extreme phenotypes and selection for
intermediate phenotypes, that makes a difference to the prob-
ability that i is small in CAi.

Another model that is worth considering is suggested by the
following passage from the Origin:

If under a nearly similar climate, the eocene inhabitants of one
quarter of the world were put into competition with the
existing inhabitants of the same or some other quarter, the
eocene fauna or flora would certainly be beaten and extermi-
nated; as would a secondary fauna by an eocene, and a
palæozoic fauna by a secondary fauna. I do not doubt that this
process of improvement has affected in a marked and sensible
manner the organization of the more recent and victorious
forms of life, in comparison with the ancient and beaten forms;
but I can see no way of testing this sort of progress (Darwin,
1859, p. 337).

Here Darwin is saying that selection improves fitness. This has the
following consequence:

� If M2 is a drift model in which f 0 ¼ f 1 ¼ f 2 ¼⋯¼ f T�1 and M5

says that selection improves fitness with the result that
f 0o f 1o f 2o⋯o f T�1, then sðM2ÞosðM5Þ, provided that both
models start with the same value for f0.

Selection when it improves fitness can do a worse job of getting i
to be small in CAi than drift does.

Two more alternatives to natural selection are worth mentioning,
since Darwin thought about them both. The first is the doctrine of
special creation. If a benevolent deity separately created numerous
kinds of organism, and if this God would not destroy what he had
created, i would not be small in CAi. The second is Lamarck's theory
of evolution, according to which the major kinds of organism now

alive trace back to separate start-ups.1 Natural selection (as Darwin
understood it) would be evidence that i is small in CAi if these
alternatives were the only games in town.

In summary, the models that confer the highest probability on
CAi when i is small are ones in which the probability of the
survival of a start-up to the present (i.e. s(M)) lies close to the
proportion of start-ups that survive; thus if there were a large
number of start-ups, this favors models in which s(M) is small. The
impact of selection on s(M) depends on its type – selection that
tends to increase fitness between generations can lead to larger
values of s(M) than drift; however other types of selection
(favoring extreme or intermediate phenotypes) can lead to the
same s(M) value, and this value could even be shared by a
drift model.

In our analysis, we have assumed that whether a given start-up
has descendants alive now is independent of whether other start-ups
have extant descendants. This assumption is, at best, only approxi-
mately true. On the one hand, the success of one start-up may make
other start-ups less viable, due to predation or competition. On the
other hand, interactions between the lineages stemming from sepa-
rate start-ups can be symbiotic, as in the emergence of hybrid lineages
via events such as endosymbiosis in early life (Margulis, 1970). The
assumption of independence ignores the intricacies of these events
and interactions (the details of which would be difficult to estimate)
by providing a simple null model that allows tractable calculations
and avoids introducing numerous additional parameters. The conclu-
sions drawn here generalize only to the extent that the survival of
distinct start-ups can be viewed as “approximately” independent.

The relationship of Darwin's hypothesis that i is small in CAi to his
hypothesis that natural selection has been an important cause of trait
evolution is multi-faceted. First, there is Mayr's point that the two are
logically independent. Second there is Darwin's point that there can be
strong evidence for common ancestry even if selection never caused a
trait to evolve. Third, there is the point that common ancestry entails
evolution, and Darwin's theory would be woefully incomplete unless it
provided a mechanism that can cause traits to evolve (Darwin, 1859, p.
3). Fourth, there is the use that Darwin makes of the thesis of common
ancestry to test hypotheses about natural selection. To figure out which
traits natural selection will cause a species to have, one needs to know
the traits that were present in the ancestors of that species. Without a
timemachine, theway to get a grip on the ancestral state of the lineage
is to look at the target species's collateral relatives (Darwin, 1859, p.
187). It is the fact of common ancestry that allows Darwin to use the
observed characteristics of extant species to make inferences about
ancestors (Sober, 2011).

In this paper we have added to these points by describing two
connections between common ancestry and natural selection in
Darwin's theory. First, we have shown that there are forms of
natural selection that make it highly probable that i is small in CAi.
When natural selection is conceived of in this way, we have an
important harmony between these two parts of Darwin's theory:
natural selection reinforces the thesis of common ancestry. How-
ever, Darwin describes other types of natural selection and these
fail to make it highly probable that i is small in CAi. In addition,
nonselective processes can make it highly probable that i is small
in CAi. Thus, the case for common ancestry does not depend on
natural selection's being the main cause of trait evolution, but
certain forms of natural selection make common ancestry highly
probable.

1 For discussion of the nontheistic theories that preceded Darwin's, see Rupke
(2005).
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Appendix A. Proofs of Propositions 1–3

A.1. Proof of Proposition 1

By Proposition 8.5.2 of Semple and Steel (2003),

PrðA;B share trait xjCAÞ ¼ p½pþð1�pÞe�μ�2þð1�pÞ½pð1�e�μÞ�2;
ð1Þ

where μ¼ r � t, and where r is the substitution rate divided by
1�p2�ð1�pÞ2 ¼ 2pð1�pÞ. The first term on the right of (1)
handles the case where the state x was present in the ancestor
of A and B, while the second term accounts for the possibility that
x was absent in this ancestor; the squaring present in both these
terms recognizes that the two lineages leading from this ancestor
A and B are conditionally independent, given the ancestral state.
Straightforward algebra applied to (1) now shows that

PrðA;B share trait xjCAÞ ¼ p2þð1�pÞpe�2μ: ð2Þ
Since the model is stationary, PrðA;B share trait xjSAÞ ¼ p2, so by
dividing (2) by p2 and substituting μ¼ r � t, we arrive at the equation
LRCA=SA ¼ 1þðð1�pÞ=pÞe�2r�t ; as claimed.

For the second part of Proposition 1, not only do we allow more
taxa (and an arbitrary tree topology) but we also provide a result
that generalizes the 2-state non-symmetric model to the ‘equal
input model’ on any number of states (for details, see Semple and
Steel, 2003). For our calculations we exploit an equivalent descrip-
tion of this model sometimes referred to as ‘Fortuin–Kasteleyn’
type of random cluster model (see Section 2.1 of Matsen et al.,
2008). Let C ¼ 1;2;…n be the number of components of the
partition of the set of leaves of T induced by an independent
Poisson process that acts with intensity r along the edges of the
tree (the partition regards two leaves as being in the same
component if the path between them does not cross an edge on
which the Poisson event has occurred). Here r is the substitution
rate, divided by 1 minus the sum of the squares of the stationary
probabilities of the states. Then if ψx denote the probability that,
under the equal input model, all n leaves of T are all in state x, and
if p denotes the stationary probability of x, the random cluster
description allows us to write ψx as follows:

ψ x ¼ E½pC � ¼
Xn
i ¼ 1

PrðC ¼ iÞpi: ð3Þ

Notice that from Eq. (3), we have

ψ xZp � PrðC ¼ 1Þþpn � PrðC41Þ:
Now, PrðC ¼ 1Þ ¼ e� rL; where L is the sum of the branch lengths of
T, Consequently, we have

ψ xZpe� rLþpnð1�e� rLÞ ¼ pnþpð1�pn�1Þe� rL: ð4Þ
Moreover, if the most recent common ancestor of the leaves of T is
at time t in the past then Lrnt (and with equality precisely if T
were a star tree). It thus follows from (4) that

ψ xZpnþpð1�pn�1Þe�nr�t :

Dividing this by pn (the probability of the same event under (SA)),
we obtain the lower bound on LRCA=SA given in Proposition 1.
Notice that this bound is exact when n¼2.

A.2. Proof of Proposition 2

In the models we compare, the n start-up organisms may be of
different types, with type Aj having probability aj of occurrence as
a start-up, and a probability sj of having at least one surviving
descendant at the present. The values aj and sj may depend on
the model of evolution, so we let sðMÞ ¼ Pn

j ¼ 1 ajsj. Note that we

have
Pn

j ¼ 1 aj ¼ 1 and that s(M) is the probability that a randomly
selected start-up (sampled according to the aj frequencies) has
survivors at the present. Suppose that each of the n start-ups arose
independently (with the probabilities described), and the lineages
generated by different start-ups survive to the present (or not)
independently of each other. In this case, PrðCAijMÞ is the binomial
probability of obtaining exactly i successes in n trials, where the
probability of success on each trial is s(M).

By the independence assumptions above,

PrðCAijM&EÞ ¼ n

i

� �
sðMÞið1�sðMÞÞn� i=ð1�ð1�sðMÞnÞ:

Therefore, we obtain the stated expression for the likelihood
namely:

LR¼ xið1�xÞn� ið1�ð1�yÞnÞ
yið1�yÞn� ið1�ð1�xÞn

; ð5Þ

where x¼ sðM1Þ; y¼ sðM2Þ. Routine differential calculus shows that
the (real-valued) function ϕðtÞ ¼ tjð1�tÞm� j satisfies

dϕ
dt

r0 for tZ j=m and
dϕ
dt

Z0 for tr j=m: ð6Þ

For Part (i), since 0rxoy then 1�ð1�yÞn41�ð1�xÞn, and so,

xið1�xÞn� ið1�ð1�yÞnÞ4xið1�xÞn� ið1�ð1�xÞnÞ: ð7Þ
Now, applying (6) with j¼ i and m¼n gives

xið1�xÞn� iZyið1�yÞn� i; ð8Þ
since i=nrxoy. Combining (7) and (8) gives

xið1�xÞn� ið1�ð1�yÞnÞ4yið1�yÞn� ið1�ð1�xÞnÞ
and so, by (5), LR41, as claimed.

For Part (ii), notice that the identity 1�an ¼ ð1� aÞð1þaþa2þ
⋯þan�1Þ applied to a¼ ð1�xÞ and a¼ ð1�yÞ gives
1�ð1�xÞn ¼ xð1þð1�xÞþð1�xÞ2þ⋯þð1�xÞn�1Þ;
and

1�ð1�yÞn ¼ yð1þð1�yÞþð1�yÞ2þ⋯þð1�yÞn�1Þ:
Thus, since 0rxoy, and so ð1�xÞ4 ð1�yÞZ0, we obtain

x
1�ð1�xÞn ¼

1Pn�1
j ¼ 0 ð1�xÞj

o 1Pn�1
j ¼ 0 ð1�yÞj

¼ y
1�ð1�yÞn: ð9Þ

Moreover, applying (6) with j¼ i�1, m¼ n�1 gives

xi�1ð1�xÞn� iryi�1ð1�yÞn� i; ð10Þ
since xoyr ði�1Þ=ðn�1Þ. Multiplying the left-hand sides of
(9) and (10), and applying these two inequalities gives

xið1�xÞn� i

1�ð1�xÞn o
yið1�yÞn� i

1�ð1�yÞn ;

and so, by (5), LRo1, as claimed.
For Part (iii), notice that the likelihood ratio can be written as

LR¼ Aeai; ð11Þ
where

A¼ 1�sðM1Þ
1�sðM2Þ

� �n

� 1�ð1�sðM2ÞÞn
1�ð1�sðM1ÞÞn
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and

a¼ ln
sðM1Þ

1�sðM1Þ

� �
sðM2Þ

1�sðM2Þ

� ��
:

��

The assumption that sðM1Þ; sðM2Þa0;1 implies that A and a are
well-defined, and the assumption that sðM1ÞasðM2Þ implies that
aa0. Now for aa0, the equation Aeas ¼ 1 has unique real solution
for s, namely s¼ lnð1=AÞ=a. It follows from (11) that as i increases,
LR crosses the value 1 for at most one value of i. Furthermore, since
n41, LR must cross the value 1 exactly once, since no probability
distribution can (strictly) dominate another, and when n41, there
are at least two values that i can take with positive probability.

A.3. Proof of Proposition 3

For each start-up, we model the population of its descendants as a
discrete branching process, starting with a single individual at time
0 and ending with (zero or more) extant individuals at the present,
which we will take as generation T. For any given one of the n start-
ups, let sT be the probability that there is at least one extant individual
existing at the present that is a descendant of this start-up (this will be
the sj value referred to at the start of the previous proof, if the start-up
is individual j). In this branching process, each individual is assumed to
have a Poisson-distributed number of surviving offspring in the next
generation; however, the expected number of surviving offspring from
a single start-up can vary both within a generation and between gene-
rations. Thus, for individual x in generation j, we will let λðx; jÞ be the
expected number of surviving offspring x has in generation jþ1; we
may regard this as a measure of the “fitness” of this individual.2 We
will let λj be the average λðx; jÞ value λðx; jÞ across all individuals x in
generation j who are descendants of a given start-up (provided there
is at least one individual present in generation j; otherwise, λj is
undefined). Thus if GðjÞ is the (random) set of individuals in generation
j then, provided this set is non-empty, we have

λj ¼
1

jGðjÞj
X

xAGðjÞ
λðx; jÞ;

where jGðjÞj denotes the number of individuals in GðjÞ.
Now suppose we are given (average) fitness values for each gene-

ration f j; jZ0. Wewill write “λj � f j” provided that for each j between
0 and T�1, GðjÞa∅ and λj ¼ f j, or GðjÞ ¼∅ (thus � is weaker than
equality, since it leaves open the possibility that λj is undefined if the
population is already extinct by generation j).

Let random variable Nj denote the size of the population in
generation j for j¼ 0;1;…N. Thus N0 ¼ 1 and sT ¼ PrðNT 40Þ. Now,
for jZ0, we have

Njþ1 ¼
X

xAGðjÞ
Yjx;

where ðYjx : xAGðjÞÞ is a sequence of independent Poisson ran-
dom variables, with Yjx having the expected value λðx; jÞ. By the

reproductive property of the Poisson distribution (a sum of indepen-
dent Poisson variables has a Poisson distribution), it follows that,
conditional on Nj, Njþ1 has a Poisson distribution, with meanP

xAGðjÞλðx; jÞ ¼ f j � Nj (note this equality is also valid when GðjÞ ¼∅,
since f j � Nj ¼ 0 for any value fj when Nj¼0). Thus, conditional on the
λj � f j for j¼ 0;…; T�1, it follows by induction on j (starting with the
base case j¼0) that the distribution of Nj is fully determined by the tj
values for each j and, in particular, for j¼T. From this distribution on
NT, we have sT ¼ PrðNT 40Þ. Notice that, although Njþ1 has a Poisson
distribution conditional on Nj, the (absolute) distribution of Njþ1 will
not, in general, be a Poisson distribution.

Finally, consider what happens when the fj values are altered. Given
two fitness profiles, f ¼ ðf 0; f 1;…; f T�1Þ and f 0 ¼ ðf 00; f 01;…; f T� 10Þ, we
write fof 0 if f jr f 0j for all 0r joT with at least one of the inequalities
being strict. Given twomodels of the type described, conditional on the
fitness profiles f and f 0, the respective non-extinction probabilities at
time T, sT and s0T , satisfy

fof 0 ) sT os0T : ð12Þ

This follows by applying a coupling argument to establish (12) in the
special case where f 0 ¼ fþϵ � ei for any ϵ40 (where ei is the vector
that has 0's except for position iAf0;1;…; T�1g where the entry is 1),
fromwhich the general case follows directly. Thus, any combination of
one or more increases in the fitness values will necessarily increase sT
(i.e. larger values for s(M) for the corresponding model M).
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