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CARTWRIGHT ON EXPLANATION AND IDEALIZATION

ABSTRACT. Nancy Cartwright (1983, 1999) argues that (1) the fundamental laws of
physics are true when and only when appropriate ceteris paribus modifiers are attached and
that (2) ceteris paribus modifiers describe conditions that are almost never satisfied. She
concludes that when the fundamental laws of physics are true, they don’t apply in the real
world, but only in highly idealized counterfactual situations. In this paper, we argue that
(1) and (2) together with an assumption about contraposition entail the opposite conclusion
– that the fundamental laws of physics do apply in the real world. Cartwright extracts
from her thesis about the inapplicability of fundamental laws the conclusion that they
cannot figure in covering-law explanations. We construct a different argument for a related
conclusion – that forward-directed idealized dynamical laws cannot provide covering-law
explanations that are causal. This argument is neutral on whether the assumption about
contraposition is true. We then discuss Cartwright’s simulacrum account of explanation,
which seeks to describe how idealized laws can be explanatory.

“One source of misunderstanding is the view . . . that a hypothesis of the simple form ‘every
P is Q’ . . . asserts something about a certain limited class of objects only, namely the
class of all P ’s. This idea involves a confusion of logical and practical considerations:
Our interest in the hypothesis may be focused upon its applicability to that particular class
of objects, but the hypothesis nevertheless asserts something about, and indeed imposes
restrictions upon, all objects.” (Hempel 1965, p. 18)

In How the Laws of Physics Lie, Nancy Cartwright argues that the fun-
damental laws of physics don’t provide true descriptions of how objects
behave in the real world. They either make false claims about real objects
or true claims that apply only in highly idealized counterfactual situations.
For example, when Newton’s law of gravitation (f = Gm1m2/r2) is
interpreted literally, it is false – the net force acting on a pair of objects
almost never has the value specified. In defense of this thesis, Cartwright
considers two ways that one might propose to reinterpret this law so that it
comes out true:

(1) Interpret the law as including a ceteris paribus modifier (i.e.,
if there are no forces other than gravity at work, then f =
Gm1m2/r2).

(2) Interpret the law as describing a component force (i.e., the force
due to gravity fg = Gm1m2/r2).
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Cartwright rejects interpretation (2) because she denies the reality of com-
ponent forces; this has elicited criticisms from several philosophers.1 The
correctness of Cartwright’s position on this issue is not the focus of our
paper. Rather, we want to assess Cartwright’s argument that if we interpret
the fundamental laws of physics as in (1), then their antecedents will de-
scribe conditions that are almost never satisfied; hence, they won’t describe
how real objects actually behave. With respect to this argument, Cartwright
writes:

Ceteris paribus generalizations, read literally without the ‘ceteris paribus’ modifier, are
false. They are not only false, but held by us to be false; and there is no ground in the
covering-law picture for false laws to explain anything. On the other hand, with the mod-
ifier the ceteris paribus generalizations may be true, but they cover only those few cases
where the conditions are right. For most cases, either we have a law that purports to cover,
but cannot explain because it is acknowledged to be false, or we have a law that does not
cover. Either way, it is bad for the covering-law picture. (Cartwright 1983, 45–46)

Cartwright’s argument can be stated as follows:

(3) The fundamental laws of physics are true only when appropriate
ceteris paribus modifiers are attached.2

(4) Ceteris paribus modifiers describe conditions that hold only
under ideal situations.

(5) When the fundamental laws of physics are true, they apply only
to objects in ideal (counterfactual) situations.

(6) Therefore, the fundamental laws of physics don’t apply to
objects in the real world.3

We will argue that even granting the truth of premises (3) and (4), (5) does
not follow (hence, neither does (6)).

Cartwright says that the statement “two bodies exert a force between
each other which varies inversely as the square of the distance between
them, and varies directly as the product of their masses” is false unless
we attach the ceteris paribus modifier “there are no forces other than
gravitational forces at work”. She writes:

Speaking more carefully, the law of universal gravitational is something like this: If there
are no forces other than gravitational forces at work, then two bodies exert a force between
each other which varies inversely as the square of the distance between them, and varies
directly as the product of their masses. I will allow that this law is a true law, or at least one
that is held true within a given theory. But it is not a very useful law . . . . Once the ceteris
paribus modifier has been attached, the law of gravity is irrelevant to the more complex
and interesting cases. (Cartwright 1983, 58)
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Thus, according to Cartwright, a true law will have the form ‘C → L’.
Cartwright argues that L is true only if the qualifier concerning C is at-
tached to it, but C is almost never satisfied in the real world. Hence, the
law is a true conditional whose antecedent and consequent are both false.
For this reason, Cartwright concludes that ‘C → L’ fails to apply to real
objects. We now will argue that Cartwright’s claims (3) and (4) and a
plausible principle concerning contraposition entail that ‘C → L’ does
apply to real objects.4

Let’s consider the laws that Cartwright discusses to see if their contra-
positives apply to real objects. The first example is the law of gravitation:

If there are no forces other than gravity at work, then f =
Gm1m2/r2. (C → L)

This is equivalent to:

If f �= Gm1m2/r2, then there are forces other than gravity at
work. (∼ L →∼ C)

Cartwright claims that ‘C → L’ does not apply to objects in the real
world because C and L are each false of real objects. However, this means
that ∼C and ∼L are each true of real objects, so presumably ‘∼L →
∼C’ applies to real objects. This leads to the unsatisfactory result that a
conditional and its contrapositive, though logically equivalent, nonetheless
apply to different things.

The same pattern may be found in another example that Cartwright
considers – Snell’s law. After claiming that Snell’s law is false as it is
stated in textbooks, she represents Snell’s law as follows:

Refined Snell’s Law: For any two media which are optically isotropic, at an interface
between dielectrics there is a refracted ray in the second medium, lying in the plane of in-
cidence, making an angle θt with the normal, such that: sin θ/ sin θt = n2/n1. (Cartwright
1983, 47)

Cartwright thinks that the condition about optical isotropy is almost never
satisfied, so the law does not apply to real objects. However, this means
that if a medium is such that sin θ/ sin θt �= n2/n1, then it is not isotropic.
Thus, the contrapositive of Cartwright’s Refined Snell’s Law does apply to
real objects. If a conditional and its contrapositive apply to precisely the
same things, then at least one of these judgments about the applicability of
a conditional and its contrapositive must be wrong.

Consider a third example from a different science – the Hardy–
Weinberg law in population genetics. It states that:
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If no evolutionary forces are at work and the gamete frequency of gene A is p and the
gamete frequency of gene a is q (where p + q = 1), then the frequencies of the genotypes
AA, Aa, and aa are p2, 2pq, and q2, respectively. (Sober 1984)

The antecedent of this law is never satisfied, so if we apply Cartwright’s
argument, we should conclude that this law does not apply to real popula-
tions. However, if we look at the contrapositive of this law, we see that it
does apply to real populations. If we observe that the genotype frequencies
aren’t at their Hardy–Weinberg values, then there are evolutionary forces
at work.

Here is the general pattern: take any true law in conditional form whose
antecedent and consequent are false (according to Cartwright, all fun-
damental laws in physics have this feature). In such a case, even if the
conditional itself seems to be vacuous, its contrapositive won’t be, since
the antecedent and consequent of the contrapositive will correctly describe
real objects. If a conditional and its contrapositive apply to the same things,
then either both apply to real objects or neither does.

Thus far we’ve seen that three claims are in conflict: That ‘C → L’
fails to apply to real objects if C involves an idealization, that ‘∼L → ∼C’
applies to real objects, and that a conditional and its contrapositive must
apply to exactly the same things. Which of these claims should be aban-
doned? To begin with, we think it is implausible to deny that a conditional
and its contrapositive apply to exactly the same things. Since a conditional
and its contrapositive are logically equivalent, they are different verbal
formulations of the same proposition. Laws, it should be remembered, are
supposed to be extra-linguistic entities; Newton’s law of gravitation is no
more a part of English than it is of any other natural language. If laws are
propositions of a certain type, then Cartwright’s position on contraposition
must be mistaken.

We also find it implausible to deny that ‘∼L → ∼C’ applies to the
systems of which ∼L and ∼C are true. After all, scientists use such
contrapositives to reason about real world systems. For example, if this
population deviates from Hardy–Weinberg proportions, then it must be un-
dergoing some evolutionary process. If this is not an example of “applying
the contrapositive to a real object”, we don’t understand what “applying”
means.

What follows, then, is that we should reject Cartwright’s thesis that
laws of the form ‘C → L’ fail to apply to real systems just because C

involves an idealization. We suspect that Cartwright drew this conclusion
by focusing exclusively on the argument form ‘If C, then L. C. Therefore
L.’ Since C is false in the real world, this argument form cannot be applied
to real objects. The point about the argument form is correct, but nothing
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follows about the conditional itself. For the same conditional also plays a
role in a different argument scheme, namely ‘If C, then L. ∼ L. Therefore
∼ C’, and this form of argument does apply to real objects.

We recognize that Cartwright may want to contest the claim that a
conditional and its contrapositive apply to exactly the same things. Given
this, it is gratifying that something like Cartwright’s conclusion can be
defended without taking a stand on this question. Cartwright’s main point
in advancing her claim about the inapplicability of fundamental laws is
to develop a point about explanation: true fundamental laws do not figure
in covering law explanations. The argument we have in mind concerns
forward-directed deterministic dynamical laws – laws that have the form
“if C holds at time t , then E holds at t + �t”. Suppose the C in this law
describes idealized circumstances. This means that the forward-directed
argument form does not apply to real systems, but the backwards- directed
argument form does, as we have explained. If explanation must be causal
and if causes must precede their effects, then the backwards-directed ar-
gument, though applicable to real objects, cannot provide an explanation
of its conclusion; one can’t explain what happens at some earlier time by
describing the later state of the system. Recall that Cartwright’s goal was to
show that fundamental laws don’t provide covering law explanations. The
conclusion of the argument we have presented is that forwards-directed
deterministic dynamical laws that describe idealized circumstances in their
antecedents cannot provide covering-law causal explanations, regardless of
whether these laws are classified as fundamental or derived.5

What is the situation with respect to dynamical laws that are prob-
abilistic? To begin with, we note that whereas a conditional and its
contrapositive are logically equivalent, “Pr(X | Y ) = p” and “Pr(not
Y | not X) = p” are not. Furthermore, it turns out that if “Pr(E holds
at t + �t | C hold at t) = p” is a law, then Pr(∼C holds at t | ∼E

holds at t + �t) = q” rarely is. The reason is that laws must be time-
translationally invariant; see Sober (1993b) for discussion. The conclusion
we draw is that if “Pr(E holds at t + �t | C hold at t) = p” is a law in
which C involves an idealization, then the following argument form will
not constitute a covering-law explanation:

Pr(E holds at t + �t | C hold at t) = p

C holds t

p [=================

E holds at t�t

The reason is that the second premise is false. Notice that this point ap-
plies, regardless of whether we demand that p be high, as Hempel’s (1965)
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inductive-statistical model requires, or allow p to take any value, which is
what Salmon’s (1984) account permits.

The conclusion of our argument, then, is that forward-directed dynam-
ical laws fail to provide covering-law causal explanations, if the laws in
question are deterministic and contain idealizations in their antecedents,
and if they are probabilistic and contain idealizations in their conditioning
propositions. This argument differs from Cartwright’s in three ways. First,
ours does not gainsay the assumption that a conditional and its contra-
positive apply to exactly the same things. Second, it does not require a
distinction between fundamental and non-fundamental laws. And third,
our argument is restricted to causal explanations. Despite these differ-
ences, we believe that our argument captures much of what Cartwright
is after.

Cartwright’s goal was to show that laws that contain idealizations
cannot be used in covering-law explanations. She thinks that this has im-
plications for many theories of explanation, not just Hempel’s, and so
she uses the expression “covering-law model of explanation” in a very
wide sense, and we have followed her in this. As noted above, the phrase
also applies to Salmon’s (1984) model. But what, then, does talk of the
covering-law model actually cover? The argument we have constructed
pertains to any theory of explanation that requires the following: (i) the
explanans must describe the cause(s) of the explanandum; (ii) the ex-
planans must cite a law; (iii) all of the explanans propositions must be
true; (iv) the explanans explains the explanandum by entailing it or by con-
ferring a probability on it. Forward-directed dynamical laws that contain
idealizations in their antecedents (or in their conditioning propositions, if
they are probabilistic) cannot figure in explanations, if explanations must
have these features. Cartwright (1983) proposes a “simulacrum account
of explanation” as an alternative to the covering-law approach; the main
point of this account is to make room for the fact that idealized laws can
be explanatory. However, she provides very few details on how this new
model of explanation is to be understood. We take up this problem in what
follows. Our proposal will be that some of the explanations that idealized
laws help provide satisfy conditions (i)–(iii), but not (iv).

In evolutionary biology, optimality models describe the value of a trait
that maximizes fitness, given a set of constraints. For example, the op-
timal length of a bear’s fur might be modeled as a function of the ambient
temperature, the bear’s body size, the energetic cost of growing fur, and
so on. These models are often interpreted dynamically – if organisms are
fitter the closer they are to the specified optimum, and if natural selection
is the only force acting on the population, then the optimal trait value will
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evolve. Understood in this way, optimality models contain idealizations;
they describe the evolutionary trajectories of populations that are infinitely
large in which reproduction is asexual with offspring always resembling
their parents, etc. (Maynard Smith 1978; Sober 1993a).

We want to argue that optimality models are explanatory despite the fact
that they contain idealizations. As just noted, these models are interpreted
as entailing conditionals of the following form:

(7) If organisms are fitter the closer they are to the optimal value
α and if no forces other than selection are at work in the pop-
ulation, then the population will evolve to a state in which all
organisms exhibit the trait value α.6

Suppose the optimality model correctly describes how selection acts on the
trait of interest:

(8) Organisms are fitter the closer they are to the optimal value α.

Given this information, suppose we observe that

(9) The n organisms in the population have trait values β1, β2, . . . ,
βn (where each βi differs only negligibly from α).

Our question is – do (7) and (8), if true, together explain (9)? We think that
the answer is yes, even if one can provide no details about the nonselective
forces that happen to be acting on the population, and no idea how that
more complex situation ought to be modeled.7 Proposition (8) provides a
partial description of the initial conditions and proposition (7) provides
an idealized model whose antecedent applies to no real world system.
Granted, these propositions do not constitute a complete explanation of
(9) in which all causally relevant factors are described, but we think they
are explanatory nonetheless.

The pattern here is hardly unique to evolutionary biology. Consider the
law of gravitation, understood, as Cartwright says it should be, as describ-
ing the net force that would be present if gravitation were the only force at
work. If the law plus the true masses of a pair of objects and the distance
between them and the assumption that no other forces are at work (plus
f = ma) entail that the objects should exhibit an acceleration of α and
one observes that the acceleration is β (where α and β differ only negli-
gibly), then the idealized law plus the partially specified initial conditions
are explanatory.8

If (7) and (8) do explain (9), the idea that explanations are arguments
appears even more doubtful than Salmon (1984) argued that it is. Salmon’s
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point is that the explanans can confer a low probability on the explanan-
dum. However, we don’t think that (7) and (8) confer a probability on
(9) at all. What is the probability that the observed trait values (the βi’s)
will be close to α, given that α is the trait value that should evolve in an
idealized circumstance that does not obtain? We don’t know, but it isn’t
necessary to know this. Propositions (7) and (8) explain (9) even though
they do not tell you what the probability of that proposition is. In this type
of explanation-by-idealization, conditions (i)–(iii) are satisfied, but (iv) is
not.

We began by criticizing Cartwright for drawing an invidious distinction
between a conditional and its contrapositive. We then showed how her
argument can be reconstructed without requiring that a conditional and
its contrapositive apply to different things. This new argument reaches a
slightly different conclusion from Cartwright’s; we showed how certain
sorts of dynamical laws cannot figure in covering-law explanations that
are causal. We then tried to flesh out Cartwright’s idea that explanation-
by-idealization requires a new account of explanation. A causal model
contains an idealization when it correctly describes some of the causal
factors at work, but falsely assumes that other factors that affect the out-
come are absent. The idealizations in a causal model are harmless if
correcting them wouldn’t make much difference in the predicted value of
the effect variable. Harmless idealizations can be explanatory, as is shown
by the fact that (7) and (8) help explain (9). In this pattern of explanation,
the explanans is entirely true; it explains the explanandum, not by entailing
it or by conferring a probability on it (high or low), but by showing that
the value described in the explanandum is close to the value predicted by
the idealization.
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NOTES

1 For this issue see Forster (1988a, b), Creary (1981), Chalmers (1993), Earman and
Roberts (1999), and Needham (1991). Although all these papers are somewhat relev-
ant to Cartwright’s argument above, Forster and Creary specifically address Cartwright’s
challenge concerning the reality of component forces.
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2 Although Cartwright says that all laws require ceteris paribus modifiers, it is clear from
her discussion that in the case of the fundamental laws of physics, she thinks the ceteris
paribus modifiers are exactly specifiable. This contrasts with the views of philosophers
(e.g., Schiffer (1991)) who think that the ceteris paribus clauses used in special science
generalizations aren’t exactly specifiable.
3 Cartwright (1999) says that she still holds the view of laws she defended in Cartwright
(1983).
4 It is arguable that contraposition is not always valid. Consider the following example: “If
I made a mistake, then I didn’t make a big mistake”. The contrapositive of this conditional
is “If I made a big mistake, then I didn’t make a mistake”. However, contraposition is valid
for the laws we will consider. Detailed discussion of this issue can be found in Jackson
(1991).
5 What if a backwards deterministic law contained an idealization in its antecedent? The
law will have the form “if I holds at time t , then C holds at time (t−�t)”, where I involves
an idealization. The contrapositive of the law says “if not-C holds at (t − �t), then not-I
holds at t”. If not-C and not-I both apply to real systems, then this law can be used in a
Hempelian explanation. And if one does not prohibit “negative properties” such as not-C
from being causes, the contrapositive seems capable of providing a covering-law causal
explanation. This is why, in the case of deterministic laws, we have limited our argument
to forward-directed laws that contain idealizations in their antecedents. We owe this point
to John Earman.
6 Talk of all other evolutionary forces being absent sometimes means that some quant-
itative variable has a value of zero (e.g., the mutation rate), but at other times it means
that certain idealizations are in place (as in the assumption of asexual reproduction). As
Cartwright (1983, p. 45) says, it is sometimes apt “. . . to read ’ceteris paribus’ as ‘other
things being right’ ”.
7 This answer does not involve a commitment to adaptationism, which can be thought of
here as the view that (7) and (8) are usually true if (9) is; for discussion, see Sober (1993a).
Nor does it oblige one to accept the following generalization:

If organisms are fitter the closer they are to the optimal value α and if the
forces other than selection are of only negligible value, then the organisms in
the population should exhibit trait values close to α.

It is possible that the true but unknown underlying laws exhibit sensitivity to initial
conditions.
8 Selection and Newtonian gravitation are each construed as deterministic forces within
their respective theories. When an idealization concerns a force whose effects are described
probabilistically, α should be interpreted as an expected value.
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