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Objective Probabilities in Number Theory†

Jordan Ellenberg∗ and Elliott Sober∗∗

Philosophers have explored objective interpretations of probability
mainly by considering empirical probability statements. Because of
this focus, it is widely believed that the logical interpretation and the
actual-frequency interpretation are unsatisfactory and the hypothetical-
frequency interpretation is not much better. Probabilistic assertions in
pure mathematics present a new challenge. Mathematicians prove theo-
rems in number theory that assign probabilities. The most natural inter-
pretation of these probabilities is that they describe actual frequencies
in finite sets and limits of actual frequencies in infinite sets. This inter-
pretation vindicates part of what the logical interpretation of probability
aimed to establish.

1. Preliminaries

Very few philosophers nowadays have much time for the logical
interpretation and the actual-frequency interpretations of probability. And
the hypothetical-frequency interpretation is almost as unpopular. We begin
with a brief and opinionated review of why.

The logical interpretation was inspired by an analogy with formal
logic — namely, that probability represents a weakened form of deductive
entailment. As the value of Pr(B|A) approaches unity, the relationship of A
and B is supposed to resemble more and more the relationship that obtains
when A logically entails B. Whereas deductive entailment is a yes-or-no
affair, probability is said to represent the degree to which one proposition
entails another. When A entails B, A provides the strongest assurance that
B is true; when A partially entails B, the guarantee is weaker. According
to the logical interpretation, statements that assign probabilities to propo-
sitions are supposed to express logical truths; both ‘A entails B’ and ‘A
partially entails B’ are supposed to be analytic.
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PROBABILITY IN NUMBER THEORY 309

Carnap [1950b] held that there are two concepts of probability —
objective frequencies and rational degrees of belief; he developed the log-
ical interpretation as an explication of the latter. Carnap’s approach was
syntactic; within his framework, a given proposition can have different
probabilities depending on the formal language in which it is expressed. Is
this feature of Carnap’s account enough to sink it? We think not. The par-
allel with deductive logic is instructive. Logical implication is a semantic
relation, but it still is possible to describe a syntactic relation that holds
between sentences in a formal language that mirrors this semantic relation.
There is nothing wrong with syntactic treatments of logical implication in
a language, so long as we do not forget that they are specific to this or
that language. One reason that syntactic treatments of logical implication
have their place is that they obey an important constraint. If a language is
enriched by adding new constants or predicates or logical operators, this
may have the effect that the new sentences thus created are related by log-
ical implication, but the enrichment should never nullify the relations of
logical implication that obtained between sentences already present in the
weaker language.1 For example, if A entails B in sentential logic, A must
also entail B in first-order quantifier logic. Carnap’s syntactic program for
probability violated this constraint. The concept of a family of predicates is
central to Carnap’s approach. The predicates in a family must be exclusive
and exhaustive. It turns out that different values attach to Pr(individual a
is green), depending on whether you use a language in which ‘green’ is
one of n color predicates, or use another language that is otherwise the
same except that ‘light green’ and ‘dark green’ are two of the n + 1 color
predicates. Other problems arise as well. Here we will mention just one
of them, which pertains to the question of whether Carnap succeeded in
showing that probability is a logical notion. Carnap appeals to symmetry
considerations to justify assigning equal prior probabilities to sentences
that differ only via permutations of the names of individuals, but these
considerations cannot be said to embody logical truths [Hájek, 2009].

Even if these specific problems had not reared their ugly heads,
Carnap’s syntactic approach would still be open to the charge that it fails
to get at what is fundamental about probability. Imagine a set of syntactic
characterizations of logical implication, each correct for a particular formal
language, that is not anchored to and unified by a semantic characteriza-
tion of the logical implication relation. Something fundamental would be
missing. Now consider the proposition that an atom of Uranium 238 will

1 Kenny Eswaran (personal communication) raises the question of whether enriching a
language can create new relations of logical implication among sentences in the old lan-
guage. He points out that Pierce’s Law — that ((A → B) → A) → A — is not provable
in the fragment of classical logic containing just the conditional, but is provable with the
double-negation rule.
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310 ELLENBERG AND SOBER

decay in the next 1010 years. Of course, if you have a rational degree of
belief p in this proposition, you may be able to craft a language in which
that probability value is somehow reflected in syntactic features of the lan-
guage you construct. But, as Socrates said to Euthyphro, do not put the cart
before the horse. It is not the language you speak that makes your degree
of belief rational. Probability has nothing essentially to do with language.2

Just as the logical interpretation of probability has fallen into disre-
pute, the same is true of various objective interpretations that attempt to
capture what is going on when probability assignments are empirical. The
actual-frequency interpretation of probability [Venn, 1876] says that the
conditional probability Pr(B|A) is the actual frequency with which B is
true when A is true. It runs into trouble when we toss a fair coin an odd
number of times. In this case one would like to say that

Pr(the coin lands heads | the coin is tossed) = 1/2, (1)

but if the coin is tossed an odd number of times, one cannot obtain 50%
heads; and even if the fair coin is tossed an even number of times, one
might not obtain that result. The problem is not restricted to gambling
devices. Consider, for example, the idea from Mendelian genetics that

Pr(offspring is a heterozygote at locus L

| parents are both heterozygotes at locus L) = 1/2.

This does not require that half the offspring of such a parental pair are
heterozygotes.

There is another frequency interpretation of probability that may seem
to do better. Although a fair coin can be tossed an odd number of times,
maybe what is true of a fair coin is that its frequency of heads would con-
verge on 1/2 if it were tossed repeatedly. This is the hypothetical-frequency
interpretation of probability. It equates the probability’s being 1/2 with:

Freq(the coin lands heads | the coin is tossed n times) (2)

approaches 1/2 as n approaches infinity.

The problem is that a fair coin can land heads every time it is tossed
[Skyrms, 1980]. Statement (1) is not equivalent with statement (2). This

2 There are other philosophical issues that Carnap addressed by formulating theses
about language, when, in fact, his basic philosophical idea has no essential connection
with language. For example, [Carnap, 1950a] draws an epistemological distinction between
‘internal’ and ‘external’ questions; the latter cannot be answered by giving empirical evi-
dence or by citing a proof; rather, external questions can be answered only by citing the fact
that some answers are more useful than others. Carnap also says that answering an external
question involves adopting a linguistic framework. However, there is no need to give this
conventionalist epistemology a linguistic formulation [Sober, 2000].
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is not to deny that (1) is equivalent with

For any ε > 0, Pr (the percentage of heads in n tosses

is within ε of 50% | the coin is tossed n times) (3)

approaches 1 as n approaches infinity.

However, (3) is not an interpretation of the probability concept used in
statement (1), since (3) uses the very concept (‘probability’) that we are
asked to clarify. An interpretation of probability should elucidate that con-
cept in terms of other concepts that are already understood.

What interpretive options remain? Well, there are subjective
interpretations of probability, according to which probability represents
rational degree of belief (certainty). However, this will not appeal if you
are looking for an objective interpretation. And there are propensity inter-
pretations, according to which the coin’s probability of landing heads is a
propensity the coin has. Whether this is a genuine interpretation is contro-
versial. What does ‘propensity’ mean? If the suggestion is that ‘Pr(B|A)’
describes the causal power of A to bring about B, then this interpreta-
tion fails to capture a host of probability statements — for example, those
in which the probability of a cause conditional on an effect is described
(Salmon [1984, p. 205] attributes this criticism to Paul Humphreys).3 And
then there is the ‘no-theory theory’, according to which objective probabil-
ities are theoretical quantities that obey the axioms of Kolmogorov [1950]
and that cannot be defined in terms of observables [Sober, 2010]. We shall
not explore these options here, since our main interest is in the failed inter-
pretations described above. We argue in what follows that the use of prob-
abilities in number theory is good news for frequency interpretations. And
it breathes new life into part of what the logical interpretation asserts.

2. Finite Sets

It is unproblematic that mathematical properties have various frequencies
of occurrence in different finite domains of mathematical objects. For
example, consider the statement

Pr(i is prime | i is a member of the set {3, 4, 9, 12}) = 1/4. (4)

We know that actual frequencies satisfy the Kolmogorov axioms.
Proposition (4) comes out true if we use the actual-frequency interpretation
of probability.

3 And even when A is a causal promoter of B, it is unsatisfactory to represent the
strength of this causal promotion by Pr(B|A). It would be better to calibrate causal strength
in terms of the difference that A makes in B, namely as Pr(B|A) − Pr(B|¬A), though even
this is unsatisfactory; just as cause and correlation are different, the strength of a cause is
not well measured by the strength of the correlation.
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312 ELLENBERG AND SOBER

If proposition (4) expresses a truth about actual frequencies, it cannot
be understood as having the variable ‘i’ bound to a universal quantifier. It
is not true that each member of the set {3, 4, 9, 12} is prime with frequency
1/4. In this respect, proposition (4) differs from proposition (1). The usual
model of tossing a fair coin says that tosses are independent and identically
distributed (i.i.d.) — each toss has a probability of 1/2 of landing heads.
Interpreted in terms of actual frequencies, proposition (4) says that the
property of being prime and the property of being a member of the set
{3, 4, 9, 12} are related in a certain way; there is no universal quantifier.

3. Infinite Sets

Unlike the trivial probability statement just discussed concerning the set
{3, 4, 9, 12}, there are various nontrivial theorems that number theorists
have proved that assign probabilities (see, e.g., [Hardy and Wright, 2008]
and [Lang, 1994]). Here are two examples:

The probability that an integer has no perfect squares other (5)

than 1 among its divisors is 6/π2.

The probability that a prime is congruent to 1 mod 4 is 1/2. (6)

Both these statements are understood by number theorists to refer to limits
on finite sets that are made increasingly large. Statements (5) and (6) get
spelled out as follows:

Pr(i has no perfect squares other than 1 (5∗)

among its divisors | i is one of the first n integers)

approaches 6/π2 as n approaches infinity.

Pr(i is congruent to 1 mod 4 (6∗)

| i is one of the first n primes) approaches
1/2 as n approaches infinity.

Since statement (4) can be interpreted by using the actual-frequency
interpretation of probability, should (5∗) and (6∗) be understood in terms
of the hypothetical-frequency interpretation? In the previous section, we
described a problem that the hypothetical-frequency interpretation encoun-
ters when it is applied to fair coins. No such problem arises in number
theory. A fair coin can have various frequencies of heads when it is tossed
n times. But the frequency of squarefrees in the first n integers has no
such wiggle room. And the limits of those frequencies are perfectly deter-
minate as well. Propositions (5) and (6) can be interpreted by thinking
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PROBABILITY IN NUMBER THEORY 313

of probability as a limit of actual frequencies. And whereas real coins
are never tossed infinitely many times, there actually are infinitely many
integers. With respect to the actual-frequency interpretation of probability,
numbers are kinder than coins.

But there are complications. A statement like (5) has no determinate
truth value until it is made precise by an interpretation like (5∗). A different
interpretation can lead to a different conclusion. For example, one might
define a function f (n) by the rule

f (n) = n when n is a multiple of 4; 10n otherwise

and interpret (5) as

Pr(i has no perfect squares other than 1 among its divisors (5∗∗)

| i is one of the integers k satisfying f (k) < n) approaches

6/π2 as n approaches infinity.

The assertion (5∗∗), just like (5∗), interprets the probability in (5) as a limit
of actual frequencies in finite sets that grow larger and larger, where the
union of these sets is the entire set of positive integers. But (5∗∗) is false.
If (5) is true, then (5**) cannot be the right account of what (5) means. But
what does (5) really mean? One might argue that (5∗) is a more ‘natural’
interpretation of (5) than (5∗∗) is, but arguments of this kind are difficult to
make objective.

Here is an even simpler example of the same phenomenon. Consider
the proposition:

The probability that a positive integer is even is 1/2. (7)

This seems uncontroversial, and seems to be backed up by the following
statement about limits:

Pr(i is even | i is one of the first n integers) (7∗)

approaches 1/2 as n goes to infinity.

Proposition (7∗) is the right way to spell out what (7) means, under the
customary understanding of ‘first’. But what if we enumerate the integers
in a different order? For example, the sequence

1, 3, 2, 5, 7, 4, 9, 11, 6, 13, 15, 8, . . .

renders (7∗) false. Instead we have

Pr(i is even | i is one of the first n integers) (7∗∗)

approaches 1/3 as n goes to infinity.
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314 ELLENBERG AND SOBER

If the probability that a positive integer is even cannot depend on how
the integers are ordered, then this result is a problem. It is not consid-
ered a problem by number theorists, largely because the usual ordering of
positive integers is canonical. It is the only ordering compatible with addi-
tion, which is to say that it is the only one such that a + b > a for all posi-
tive integers b. To choose any other ordering would be willfully perverse.

Our suggestion is that (7) is an incomplete statement. Number theorists
usually interpret it by thinking about (7∗), which is why they judge that
(7) is true. But this is not because (7∗∗) and its ilk are false; (7∗∗) is true
(when it is understood in terms of the nonstandard sequence of integers
just described), but this does not show that (7), under its intended interpre-
tation, is false. Taking limits depends on an ordering relation, which goes
unspecified in (7); (7∗) is true relative to one ordering of integers, while
(7∗∗) is true relative to another. The thesis that probability statements like
(5), (6), and (7) should be understood in terms of limits of actual frequen-
cies in ever-increasing finite sets needs to recognize that such limits are
relative to an ordering relation.

Another delicate point arises when we ask what the probability is that
a positive integer has first digit 1. Following (5∗) and (6∗), one might try
to compute the limit of the quantity

Pr(i has first digit 1 | i is one of the first n integers) (8)

as n goes to infinity, but this limit does not exist. This might lead one
to assert that (8) does not have a well-defined value. On the other hand, in
naturally occurring data, the frequency of numbers with first digit 1 is often
well-approximated by log 2/ log 10, a phenomenon known as Benford’s
Law. According to this ‘law’, the first digit should be 1 a little less than 1/3
of the time and larger digits should occur as leading digits with lower and
lower frequency, with 9 occurring in first position less than 5% of the time
[Hill, 1998]. Surprisingly, this pattern applies to a wide range of data sets,
including street addresses, stock prices, population numbers, death rates,
and lengths of rivers. Even certain tables of mathematical and physical
constants, which presumably are not products of chance processes, obey
Benford’s Law.

Does Benford’s Law show that it is a mistake to insist that (8) be
interpreted as a limit of frequencies? No; it merely shows that in this
case the apparently most natural limiting procedure does not produce an
answer — an idea that we place in a wider context in the next section.

4. Beyond Simple Frequency: The Dirichlet Density

The frequencies on the finite interval [1 . . . n] considered in connection
with propositions (5), (6), and (7) can also be considered as weighted
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PROBABILITY IN NUMBER THEORY 315

frequencies on the set of all integers, in which the first n positive integers
are assigned equal weights, and larger integers are assigned weight 0. But
no principle commits us to this particular choice. Indeed, it is not the most
popular choice among number theorists. A more common interpretation
of probability is the Dirichlet (or logarithmic) density. Under this inter-
pretation, the statement ‘a random integer is contained in the set A with
probability p’ means that

lim
n→∞

1

log n

∑

a∈A
a<n

1

a
= p.

If the limit does not exist, we do not assign a probability to the statement
‘A randomly chosen integer lies in A’.

The exact form of the Dirichlet density is not important for this paper.
Just take from it the fact that, under this interpretation, probability is again
a limit of frequencies (albeit weighted frequencies) on finite sets. It turns
out that if a proposition has a probability under the interpretation of the
previous section (usually called the asymptotic or natural density), it has a
Dirichlet density too, and the values agree. But there are some propositions
that have a probability under the Dirichlet interpretation but not under the
naı̈ve one: for instance, the probability that an integer has first digit 1 in
the Dirichlet interpretation is log 2/log 10, just as one finds in many sets of
naturally occurring numbers. So Benford’s Law is not outside the limit-of-
frequencies interpretation of probability.

The Dirichlet density does not require that the integers arose by a
random process. In this respect it should not be surprising that Benford’s
Law applies both to numbers that can be interpreted as the result of chance
processes (e.g., death rates) and those that cannot (e.g., mathematical con-
stants). It turns out that the frequency distribution postulated by Benford’s
Law is the only distribution compatible with the ‘scale invariance’ require-
ment that the distribution be the same regardless of the choice of units
(e.g., inches, kilometers, or cubits). Not every empirical distribution has
this property. For example, consider the fact that most adult human beings
have heights between 50 and 79 inches; the high frequencies of 5s, 6s,
and 7s as initial digits in this distribution lapses if centimeters are used
instead.

If natural densities can be supplemented by Dirichlet densities, can
Dirichlet densities be supplemented in turn? We take no stand on this
mathematical question, though we note that mathematical practice cur-
rently does not take this further step. Dirichlet densities agree with natural
densities when the natural density exists. The natural density can there-
fore be seen as a base case. If the natural density specifies a value for a
probability, other admissible densities must agree on that value. But when
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316 ELLENBERG AND SOBER

the natural density is silent, others may speak up, though an argument is
needed to justify what they say.4

5. The Interpretation of Conditional Probability

The so-called Kolmogorov definition of conditional probability states that

Pr(B|A) =de f Pr(A& B)/Pr(A). (K)

It entails that the conditional probability is not defined when Pr(A) = 0.
Popper [1959], Hájek [2003], Sober [2008], and others have criticized this
definition by describing simple empirical cases in which conditional prob-
abilities make sense and have obvious values even when the condition-
ing proposition has a probability of zero. For example, Pr(the coin lands
heads | the coin is tossed) can equal 1/2 even if you make it impossible
for anyone to toss the coin (perhaps by locking it in a safe that cannot be
opened). A similar objection to the Kolmogorov definition arises in num-
ber theory. Consider proposition (6) and restrict the universe to the inte-
gers. Pr(an integer is prime) = 0 which means that Pr(integer is prime and
is 1 mod 4) = 0 as well, but the conditional probability is not undefined;
it is 1/2. Instead of regarding (K) as a definition of conditional probability,
perhaps it is better to regard it as a statement about conditional probability
that is true when (but not only when) Pr(A) > 0.

Once the sense of (K) as a definition has been discarded, it might be
preferable to write the statement in the form

Pr(B|A)Pr(A) = Pr(A& B),

in which case the proposition is true regardless of whether Pr(A) > 0.
Interpreted in this way, the statement does not say that Pr(B|A) is always
undefined when Pr(A) = 0; indeed, in that case the statement is consis-
tent with any value of Pr(B|A). This is not to say that Pr(B|A) cannot be
defined objectively when Pr(A) = 0. For example, consider the following
propositions about positive integers

A : n is a positive integer at most 10. B : n is even.

Surely one wants to say that Pr(B|A) = 1/2, even though Pr(A) = 0 under
any reasonable version of ‘limiting actual frequencies’. More bluntly,

4 Although the natural density dictates to Dirichlet densities, but not conversely, the fact
remains that values for natural densities are sometimes more easily derived by thinking
about Dirichlet densities. For instance, we do not know of a proof of (6∗) that determines
the natural density directly; instead, the proofs of (6∗) and its generalizations (due to Dirich-
let) determine the Dirichlet density, and draw a conclusion about natural density thereby.
So Dirichlet densities sometimes render natural densities epistemically accessible, even if
it is the natural density that is in some ways more conceptually fundamental.
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Pr(A|A) should be taken to be 1 even if Pr(A) = 0. We might make an
exception for cases where A is not merely an event of probability 0, but is
logically impossible; it is not obvious to us that ‘Pr(5 is even | 5 is even)’
can be sensibly defined.5

6. The Logical Interpretation of Probability

As noted above, Carnap developed his logical concept of probability by
discussing syntactic features of languages. But, as Carnap realized, there is
more to logic than syntax. What would a logical interpretation be like if it
were nonsyntactic? One possibility is the thesis that probability statements
are logical truths if they are true at all. This thesis fails for a large number
of empirical probability statements. It is not a logical truth that this coin is
fair, or that that organism has a given probability of being a heterozygote,
or that this atom has a given half-life. Even so, some probability statements
are mathematical truths. These include theorems in number theory like (5)
and (6), which, as mentioned, need to be relativized to an ordering relation.
Whether these are logical truths depends on what one means by logic.
Narrower construals of logic will have one result, broader construals (e.g.,
that set theory is part of logic) another. We have no stake in this question
about logicism.

Probability statements that are a priori also show up in empirical
sciences. An example is the statement that

PrM(the offspring is a heterozygote at locus L

| both parents are heterozygotes at L) = 1/2,

when M is the usual Mendelian model (for other examples, see [Sober,
to appear]). Of course there is more to Mendelian genetics than a pri-
ori statements such as this one; there is, additionally, the empirical claim
that Mendelism furnishes an empirically adequate account of heredity
[Fitelson, 2007].

It should be noted, however, that the fact that various probability
statements are logical or mathematical truths does not provide an interpre-
tation of probability; ‘snipes are snipes’ is a logical truth, but that does not
tell you what ‘snipe’ means. Here the view may be supplemented with the
frequency interpretation we have described. When probability statements
about gambling devices, Mendelian inheritance, and atomic half-lives are

5 Be warned, however, that some ‘obviously correct’ choices for defining Pr(B|A) when
Pr(A) = 0 lead to contradictions, as demonstrated by Easwaran [2008b]. Popper and Hájek
each propose theories of how conditional probabilities get their values without recourse to
Kolmogorov’s ‘definition’. In fact, Kolmogorov [1950] himself provides a theory of this
sort as well. Easwaran argues that Kolmogorov’s theory is superior to both Popper’s and
Hájek’s.
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318 ELLENBERG AND SOBER

considered, the logical and the frequency interpretations are rivals. In the
context of number theory, they are allies. Probability statements in number
theory describe frequencies, and they are a priori.

7. Are Number-Theoretic Probabilities Really Probabilities?

A skeptical reader might here suggest another reason that the probabilities
in number theory are more amenable to frequency interpretations than
are coin flips — namely, that number-theoretic ‘probabilities’ are not
probabilities at all. A prime number is either 1 mod 4 or it is not. No
chance process is involved. Our reply is that we agree that each number is
necessarily 1 mod 4, or necessarily not. But it does not follow that there
are no probabilities in number theory other than 0 and 1. Propositions (5),
(6), and (7) are, we agree, necessarily true, but that hardly shows that they
do not use the concept of probability. It is important to distinguish proba-
bilities in theorems from probabilities of theorems; even if the latter need
to be interpreted subjectively, it doesn’t follow that the former do too.6

As to the suggestion that objective probabilities apply only to the possible
outcomes of chance processes, our answer is that assertion is no substitute
for argument. Frequency interpretations are sufficiently ensconced in the
history of proposed interpretations of probability that it would be churlish
to deny that frequencies are probabilities when this interpretation actually
happens to work.

A second kind of skeptic would insist that probability is by definition
a measure of subjective degree of rational belief and that when number
theorists say the word ‘probability’ but mean ‘actual frequency or limit
of same’, their idiosyncratic usage should not be considered relevant to
philosophical questions about probability. To this subjectivist, we say the
following. The contention that the only sensible interpretation of probabil-
ity is as subjective degree of rational belief might seem to be bad news for
probability statements in mathematics, which are meant to be independent
of the speaker. But one way to understand the mathematician’s interpre-
tation of probability is as an objective and normative guide to what one’s
degree of belief should be. Suppose you need to place a competitive bid
on a contract that will pay you a dollar if a certain integer n, unknown to
you, is squarefree. The subjectivist agrees that your action in this situa-
tion ought to be determined by your degree of belief that n is squarefree.
The mathematician argues that you should bid no higher than 6/π2 dol-
lars, and that this is the case independent of any prior beliefs you hold
(unless, of course, you have some reasonable prior beliefs about the iden-
tity of n). Furthermore, given that subjectivists usually want probabilities

6 Easwaran [2008a] discusses the role of subjective degrees of belief in pure mathemat-
ics in connection with ‘probabilistic proofs’.
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to be normative (probabilities are said to describe how the degrees of belief
of an agent rationally ought to be related), we suggest that this normativity
often has a source outside the mind. Chance processes are one such source,
which empirical sciences describe; frequencies are another, as described in
number theory.

Both of the skeptics described in this section stamp their feet and insist
that there is just one thing that probability can mean (though they happen
to disagree about what that one thing is). Foot stamping of this sort is out of
place in the problem at hand, since the fact that there are various candidate
interpretations for probability has long been part of the very fiber of this
philosophical problem. The frequency interpretation may be wrong as a
fully general account of what probability statements always mean, or it
may be right for some bodies of discourse and wrong for others, but it takes
a more focused argument than the ones these skeptics produce to show that
this is so. We believe that such an argument is available when it comes to
many empirical probability statements, but these arguments do not touch
the frequency interpretation of probabilities in number-theoretic theorems.

8. Closure Under Conjunction

When probabilities are interpreted as limits of frequencies, it can turn out
that Pr(A& B) does not have a value, even though Pr(A) and Pr(B) do.
In other words, the set of propositions that have probabilities is not closed
under conjunction. For example, suppose X is the Benford proposition ‘n
has first digit 1’, which does not have a probability in the ‘natural density’
sense. Let A be the proposition ‘n is even’ and B the proposition ‘n is
even and has first digit 1, or n is odd and has first digit other than 1’. It
is not hard to verify that both A and B have natural density 1/2, but their
conjunction is the proposition ‘n is even and has first digit 1’, which has
no natural density.

Must a legitimate interpretation of probability entail that the set of
propositions that have probabilities is closed under conjunction? We think
the answer is no, and our reason has nothing much to do with the frequency
interpretation. Pretty much anyone who believes in objective probabilities
will claim that some propositions simply do not have objective probabil-
ities. When probabilities are discussed in connection with empirical sci-
ences, defenders of objective interpretations often cite Newton’s laws of
motion or Darwin’s theory of evolution as examples; these theories may
confer probabilities on observations, but they do not, themselves, have
objective probabilities. Any interpretation in which some propositions fail
to have probabilities is apt to deny that the set of propositions that have
probabilities is closed under conjunction. Suppose that proposition X fails
to have an objective probability. Now consider a fair coin which is marked
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‘true’ on one side and ‘false’ on the other, and let proposition Y be ‘the
coin lands “true” the next time you toss it’. So Pr(Y ) = 1/2. Finally, let Z
be the proposition ‘the word on the coin that lands face up agrees with the
truth value of X ’. It is hard to deny that Pr(Z ) should be taken to be 1/2.
For example, imagine that the truth value of proposition X was determined
long ago and written on a hidden sheet of paper; then surely the probability
that the coin agrees with the paper is 1/2, independently of what is marked
on the paper or how the mark was chosen. Now Pr(Z ) and Pr(Y ) are both
1/2, but Y & Z is logically equivalent with ‘the coin says true and X ’. If two
statements have probabilities only if their conjunction does too, then ‘the
coin says true and X ’ has a probability. By an exactly analogous argument,
so does the statement ‘the coin says false and X ’. The last two quoted sen-
tences are incompatible; so the probability of their disjunction should be
the sum of the probabilities of the disjuncts (assuming finite additivity).
But the disjunction is logically equivalent with X , which, by assumption,
does not have a probability at all. QED.

9. Interpretations of Probability — Austere and Metaphyiscal

When empirical probability statements about coin tosses, genotypes, and
half-lives are considered, actual frequency seems to be the ‘least meta-
physical’ interpretation of probability, the interpretation most completely
and directly grounded in what we observe. Actual frequencies are less
metaphysical than hypothetical frequencies or propensities. Yet number
theory apparently can get by with this austere concept of probability. How
is that possible? In more mundane physical contexts, we are driven to use
a more metaphysical concept of probability. For example, as soon as we
want to say that a coin can be fair even though it is tossed an odd num-
ber of times, we are forced to abandon the actual frequency interpreta-
tion. Perhaps the reason for this is that the domains of objects explored by
mathematics are already ‘metaphysical’, and so there is no need to supple-
ment the metaphysics already present with a heavily metaphysical notion
of probability. For example, the set of integers that number theorists con-
sider covers all possible integers. It makes no sense to consider the integers
discussed in mathematics as a sample drawn from some larger domain of
integers. This corresponds to a familiar point about possible worlds: talk of
necessity and possibility becomes extensional when the domain includes
possible worlds.

10. Coins versus Numbers

We have argued that the actual-frequency interpretation and the
hypothetical-frequency interpretation are both wrong for statements like
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‘this coin has a probability of 1/2 of landing heads when it is tossed’, but
that a frequency interpretation is correct for statements like ‘the probability
that an integer is even is 1/2’. One important difference between these two
statements is that real coins get tossed only a finite number of times while
there are infinitely many integers. However, frequency interpretations are
wrong for coins for reasons that go beyond this simple fact. Suppose, per
impossibile, that a fair coin is actually tossed an infinite number of times.
As noted earlier, it is logically possible that the coin will land heads every
time it is tossed (though this outcome has a probability of zero). But let
us focus on a particular infinite sequence of heads and tails, whatever it
happens to be. An infinite sequence of heads and tails can be understood
in the same way as an infinite sequence of odd and even integers. Just as
we can compute the limit of the frequency of even numbers in the latter,
we can compute the limit of the frequency of heads in the former (if such
a limit exists). But the probability thus defined with reference to this infi-
nite sequence of heads and tails is not the same thing as the probability
that the coin has of landing heads. There is no such thing as the sequence
of heads and tails that a fair coin would have to produce. In contrast, the
greater-than relation induces a unique sequence of integers. This is why
coins and numbers need to be treated differently, a point that goes beyond
the finite/infinite distinction.

11. Conclusion

Although the actual-frequency interpretation of probability is grossly
inadequate when it comes to understanding empirical discourse about
gambling devices, Mendelian reproduction, and atomic half-lives, it works
just fine for the probability statements that number theorists prove like (5)
and (6). A probability statement about an infinite domain is understood
by taking the limit of the actual frequencies that obtain in actual finite
domains of increasing size. Some of the values for these limits are settled
by the natural density; these then are supplemented by Dirichlet densities.
It is an open question whether further supplementations are feasible. The-
orems about such probabilities are mathematical truths, and thus the idea
that some probability statements are logical truths gains credence. Fre-
quency interpretations and logical interpretations of probability are not at
odds in this context. Whether all theorems about probability in number
theory and in other branches of pure mathematics can be understood in
this format merits further investigation.
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