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A Markov process can be invariant under time reversal and it also can exhibit a failure of invariance that
is “uniformly positive.” I show how each of these possibilities contributes to the project of deciding when
a temporal sequence of states has a higher probability than its mirror image. Neither suffices, but a
distinct property of the Markov process completes the project, namely the unconditional probabilities of
two possible states of the system at the start of the process. The concept of forward time-translational
invariance plays a role in the analysis, but I discuss backward time-translational invariance as well. I
argue that the Markov framework helps clarify how the Past Hypothesis (the hypothesis that the uni-
verse began in a very low entropy state) is related to the Second Law of Thermodynamics, and how each
is relevant to explaining why histories that exhibit entropy increase have higher probabilities than
histories that exhibit entropy decline. I argue that the Past Hypothesis, if true, helps explain this fact
about histories, but a far weaker hypothesis about the universe's initial state suffices to do so.

© 2019 Elsevier Ltd. All rights reserved.
1. Introduction

The idea of using Markov processes to clarify how the time-
asymmetric second law of thermodynamics is compatible with
time-symmetric laws of particle motion dates back at least to the
famous dog/flea model of Ehrenfest and Ehrenfest-Afanassjewa
(1907).1 Abstracting away from the physical details of thermal
processes, they consider n fleas (numbered 1, 2, …, n) and two
dogs on which the fleas live. At each time step, a number be-
tween 1 and n is chosen at random, with the result that the flea
with that number moves from the dog it is on to the other dog.
This means that a flea's probability of changing dogs is 1/n
regardless of whether it is on dog 1 or dog 2. However, if one dog
has more fleas than the other at a given time, the dog with more
fleas has a higher probability of losing a flea than the dog with
fewer. As a result, the absolute value of the difference between
the number of fleas on dog 1 and the number on dog 2 will, in
expectation, decline with time, unless the two dogs house an
equal number of fleas. This expected decline is due to there being
a probabilistic asymmetry; the probability of going from a
tion 7.2) for discussion.
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difference of dþ1 to a difference of d (where 1 � d < n) exceeds
the probability of going from a difference of d to a difference of
dþ1. The dog/flea model provides a simple illustration of how a
time-symmetric micro process (one governing what happens to
individual fleas) can result in a time-asymmetric macro process
(one concerning what happens to the difference in flea numbers
between the two dogs).

Whereas the Ehrenfests (following Boltzmann) were interested
in the relationship of micro to macro, my topic in this paper is
resolutely macro. I will use Markov processes to analyze relation-
ships that connect (i) the Second Law of Thermodynamics (SLT), (ii)
the past hypothesis (which says that the universe began in a low-
entropy state), and (iii) histories of entropy increase and their
mirror images. Does the SLT suffice to explain why histories of
entropy increase are more frequent than mirror-image histories of
entropy decline? Does coupling the SLT with the past hypothesis
explain this? And is the past hypothesis needed here, or can far
weaker assumptions about initial conditions do the job? As with
the Ehrenfests' discussion of dogs and fleas, I abstract away from
the physics of heat and the property of entropy.
al conditions �Invariance under time-reversibility and its failure in
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2. The Markov property and (forward) time-translational
invariance

Consider a probabilistic process in which a system can change
from one of several mutually exclusive and collectively exhaustive
states to another, repeatedly. The process can be described by
conditional probabilities that have the form Pr(X(t2)¼ b jX(t1)¼ a);
here t1< t2, and X(�) is a variable that maps times onto states. For
convenience, I'll consider a sequence of discrete times. More sub-
stantively, I'll assume that the processes under discussion have the
Markov property and are (forward) time-translationally invariant,
meaning:

A process has theMarkov property for a partition2 of states that
the variable X might occupy if and only if, for any two states a
and b in S, for any two times t1< t2, and for any history H(t1) of
the system before t1 that is characterized by its sequence of X
states during that temporal period, Pr(X(t2)¼ b jX(t1)¼ a)¼
Pr(X(t2)¼ b jX(t1)¼ a & H(t1)).

A process is (forward) time-translationally invariant for a
partition of states S if and only if, for any two states a and b in S,
any two times t1 and t2, and any positive integer d,
Pr(X(t1þd)¼ b jX(t1)¼ a)¼ Pr(X(t2þd)¼ b jX(t2)¼ a).

By “forward,” I mean that the conditional probabilities in this sec-
ond definition have the form Pr(later j earlier). I discuss backward
time-translational invariance in the Appendix.

Many forward probabilities fail to be time-translationally
invariant. For example, the probability that S will have an annual
salary over $40,000 at age 32, given that S graduated from uni-
versity in the United States at age 22, may have one value in this
decade but a different one in the decade before. However, it is
notable that familiar dynamical laws of nature are (forward) time-
translationally invariant. Examples include the laws of quantum
mechanics and those of population genetics; they hold true
regardless of the time towhich they are applied. I'll assume that the
same is true of the second law of thermodynamics.
3 Invariance under time-reversal is a different concept from the concept of
detailed balance, which says that Pr(X(t2)¼ b jX(t1)¼ a)
Pr(X(t1)¼ a)¼ Pr(X(t2)¼ a jX(t1)¼ b)Pr(X(t1)¼ b), where the unconditional proba-
bilities are equilibrium probabilities; see Kelly (1979, p. 5). Unfortunately, detailed
balance is often called “reversibility” in the literature on Markov chains.

4 IFupb comes close to capturing how CP-symmetry (charge conjugation parity
symmetry) is violated in particle physics (Christenson, Cronin, Fitch, & Turlay,
1964). Transitions of neutral kaon states violate time reversal, but they do so
with different “strengths,” including zero. Instead of the “uniformly positive” that I
3. Invariance under time-reversal and a type of invariance
failure

To begin, let's consider processes that are “invariant under time
reversal.” This means:

(I) A process is invariant under time reversal for a partition of
states S if and only if, for any two states a and b in S, and for
any two times t1<t2, Pr(X(t2)¼ b jX(t1)¼ a)¼ Pr(X(t2)¼ a j
X(t1)¼ b).

Notice that the two probabilities in I are forward-directed.
The definition just given is a bit nonstandard, at least for the

physics literature. There, the more usual formulation is for states a
and b to occur in the first probability in I, but a different, though
related, pair of states, a* and b*, to occur in the second (Callender,
1995, p. 332; Earman, 2002, p. 247; Earman, 2006, p. 408). For
example, consider a model in particle physics in which <X(t), V(t)>
represents the position and instantaneous velocity of a
particle at time t. If a particle moves from state<X(t1)¼ p,
V(t1)¼ v> to<X(t2)¼ q, V(t2)¼ v>, the time-reverse of this transi-
tion, in the sense of I (as liberalized in the physics literature), is
2 By a partition, I mean that the states are exclusive and exhaustive.
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moving from<X(t1)¼ q, V(t1)¼�v> to<X(t2)¼ p, V(t2)¼�v>. This
wrinkle won't matter to the ideas I'll present in what follows.3

A special case of I arises when there is a sequence of ordered
states, and the systemcan evolve directly (i.e., in one time step) from
one state to another only if the two states are adjacent. Each state is
reachable fromevery other, but the transition to a nonadjacent state
requires a series of changes. Two concepts of adjacency are needed
here: states are adjacent according to an ordering of states, whereas
times are adjacent according to an ordering of times. For example,
Tuesday is adjacent to Wednesday but not to Thursday, and a tem-
perature between 40 and 50� is adjacent to a temperature between
50 and 60, but not to a temperature between 60 and 70. Here's the
definition, using “tk” and “tkþ1” to denote adjacent times:

(Iord): A process is invariant under time reversal for a parti-
tion S of ordered states
have in
positive
in what

al cond
ics an
nd only if, for any two states a and b in S, and for any time tk,
X(tkþ1)¼ b jX(tk)¼ a)¼ Pr(X(tkþ1)¼ a jX(tk)¼ b)> 0 if
b or a and b are adjacent, and
X(tkþ1)¼ b jX(tk)¼ a)¼ Pr(X(tkþ1)¼ a jX(tk)¼ b)¼ 0
erwise.
I want to contrast Iord, not with its negation, but with a special case
of that negation, namely:

(IFupb): A process exhibits invariance failure (with a uniform
positive bias) for a partition S of n ordered states if and only if,
for any two states a and b, and for any time tk,
Pr(X(tkþ1)¼ b jX(tk)¼ a)> Pr(X(tkþ1)¼ a jX(tk)¼ b), if a and b
are adjacent and b>a, and
X(tkþ1)¼ b jX(tk)¼ a)¼ Pr(X(tkþ1)¼ a jX(tk)¼ b)¼ 0 if a and
re not adjacent and asb.
Where a<b< c and the three states are adjacent, IFupb says that
the probability of going from a to b exceeds the probability of going
from b to a, and the probability of going from b to c exceeds the
probability of going from c to b, but the values of the two differ-
ences need not be the same. The process has a uniform positive bias,
but the bias need not be constant.4
4. What do invariance and invariance failure entail about the
probabilities of different histories?

The probabilities in Iord and in IFupb are all conditional. What do
those dynamical laws say about the unconditional probabilities of
the different histories the systemmight have? For example, if times
t1< t2 are adjacent and states a< b are adjacent, does Iord entail that

PrðXðt1Þ¼ a & Xðt2Þ¼bÞ¼PrðXðt1Þ¼b & Xðt2Þ¼ aÞ; (1)

and does IFupb entail that
my definition of IFupb, what is needed for this physics example is “some
and the rest zero.” That modest change would not affect the claims I make
follows. My thanks to Bryan Roberts for this point.

itions �Invariance under time-reversibility and its failure in
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PrðXðt1Þ¼ a & Xðt2Þ¼bÞ>PrðXðt1Þ¼ b & Xðt2Þ¼ aÞ? (2)

The answer to both questions is no (Ehrenfest-Afanassjewa, 1925).
Assuming that Pr(X(t1)¼ a)> 0 and Pr(X(t1)¼ b)> 0, the definition
of conditional probability entails that

PrðXðt1Þ¼ a & Xðt2Þ¼bÞ¼ PrðXðt2Þ¼b jXðt1Þ¼ aÞ,PrðXðt1Þ¼ aÞ
(3)

PrðXðt1Þ¼ b & Xðt2Þ¼ aÞ¼ PrðXðt2Þ¼ a jXðt1Þ¼bÞ,PrðXðt1Þ¼bÞ:
(4)

It is obvious that the left-hand sides of (3) and (4) can be unequal,
even if the first term on the right-hand side of (3) equals the first
term on the right-hand side of (4). So Iord does not entail that
histories in which X increases must have the same probability as
mirror-image histories in which X declines. It also is obvious that
the left-hand sides of (3) and (4) can be equal, even if the first term
on the right-hand side of (3) is greater than the first term on the
right-hand side of (4). So IFupb does not entail that histories in
which X increases must be more probable than histories inwhich X
declines.

I now want to consider the further question of how dynamical
laws (Iord and IFupb), coupled with equalities or inequalities be-
tween histories of increase and their mirror images constrain a
third iteme the unconditional probabilities that characterize initial
conditions. To begin, let t1< t2< t3 be three successive times and a
< b< c be three adjacent states. As just noted, Iord does not entail
the following:

PrðXðt1Þ¼ a & Xðt2Þ¼b & Xðt3Þ¼ cÞ¼PrðXðt1Þ¼ c & Xðt2Þ
¼ b & Xðt3Þ¼ aÞ;

(5)

but given the Markov property, (5) can be reformulate as:

PrðXðt1Þ¼ aÞ
PrðXðt1Þ¼ cÞ ¼

PrðXðt3Þ¼ a j Xðt2Þ¼bÞ
PrðXðt2Þ¼ b j Xðt1Þ¼ aÞ$

PrðXðt2Þ¼b j Xðt1Þ¼ cÞ
PrðXðt3Þ¼ c j Xðt2Þ¼bÞ

(5*)

It follows from Iord and the assumption of (forward) time-
translational invariance that the two ratios on the right-hand side
of (5*) are both equal to unity, but that is not enough for (5*) to be
true. One also needs the assumption that

PrðXðt1Þ¼ aÞ¼PrðXðt1Þ¼ cÞ: (6)

More generally, if the process covers n consecutive times, with a
steady monotonic increase from the start time in state x1 to the end
PrðXðt1Þ ¼ aÞ
PrðXðt1Þ ¼ bÞ >

PrðXðt3Þ ¼ b j Xðt2Þ ¼ cÞ
PrðXðt3Þ ¼ c j Xðt2Þ ¼ bÞ $

PrðXðt2Þ ¼ c j Xðt1Þ ¼ bÞ
PrðXðt4Þ ¼ b j Xðt3Þ ¼ cÞ$

PrðXðt4Þ ¼ a j Xðt3Þ ¼ bÞ
PrðXðt2Þ ¼ b j Xðt1Þ ¼ aÞ : (9*)

5 This result is compatible with Zermelo's use of the Poincare' recurrence theo-
rem in criticism of Boltzmann's H theorem; see Uffink (2007) for discussion.
time in state xn, Iord entails that the probability of this history is the
same as the probability of its mirror image precisely when the
probability of the start time's being in the lowest state x1 is the same
as the probability of the start time's being in the highest state xn.

Similarly, if a < b< c are three adjacent states, IFupb does not
entail inequality (7).
Please cite this article as: Sober, E., Histories, dynamical laws, and initi
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PrðXðt1Þ¼ a & Xðt2Þ¼b & Xðt3Þ¼ cÞ>PrðXðt1Þ¼ c & Xðt2Þ
¼ b & Xðt3Þ¼ aÞ;

(7)

but again the Markov property allows (7) to be rewritten as

PrðXðt1Þ¼ aÞ
PrðXðt1Þ¼ cÞ >

PrðXðt3Þ¼ a j Xðt2Þ¼bÞ
PrðXðt2Þ¼b j Xðt1Þ¼ aÞ$

PrðXðt2Þ¼b j Xðt1Þ¼ cÞ
PrðXðt3Þ¼ c j Xðt2Þ¼bÞ

(7*)

Given time-translational invariance, IFupb entails that each of the
two product terms on the right-hand side of (7*) is less than 1, but
that isn't enough tomake (7*) true. An additional assumption about
the unconditional probabilities on the left-hand side is needed. A
simple sufficient condition for (7*) is:

PrðXðt1Þ¼ aÞ>PrðXðt1Þ¼ cÞ; (8)

which can be true even if PrðXðt1Þ¼ aÞ is very small. Notice that the
left-hand side of (7*) is a ratio between the smallest and the largest
states mentioned.

There are two terms on the right-hand side of (7*), owing to the
fact that the example at hand involves three times. This opens the
door to a more general statement: if IFupb is true and there are n
times, the probability of a history of monotonic increase (from x1 to
xn) is greater than the probability of its mirror image precisely
when

ðR1Þ PrðXðt1Þ ¼ x1Þ
PrðXðt1Þ ¼ xnÞ

is not too small. If the R1 ratio is greater than or equal to 1, that
suffices (but isn't necessary) for the generalization of (7*) to be true.
As n increases, the right-hand side of the generalization of (7*)
approaches zero. Thus, it gets easier and easier for the generaliza-
tion of (7*) to be true as the number of states gets larger and larger.5

As n increases, the constraint on the value of the R1 ratio becomes
more and more modest.

I so far have considered a history of monotonic increase and its
mirror image, but there are other histories that have positive
probability according to IFupb. For example, what does IFupb say
about the following inequality (where a < b< c and they are
adjacent)?

PrðXðt1Þ ¼ a & Xðt2Þ ¼ b & Xðt3Þ ¼ c & Xðt4Þ ¼ bÞ>
PrðXðt1Þ ¼ b & Xðt2Þ ¼ c & Xðt3Þ ¼ b & Xðt4Þ ¼ aÞ : (9)

Is a history of two-ups-and-one-down more probable than a his-
tory of one-up-and-two-downs? Inequality (9) is true precisely
when (9*) is true
Assuming (forward) time-translational invariance, IFupb entails
that the first and third product terms on the right side of (9*) are
al conditions �Invariance under time-reversibility and its failure in
ics and the past hypothesis, Studies in History and Philosophy of



E. Sober / Studies in History and Philosophy of Modern Physics xxx (xxxx) xxx4
less than 1, while the second term is greater than 1. IFupb says
nothing further about the magnitudes of these three ratios, so it
fails to provide the kind of simple criterion for this problem that it
supplied for the case of monotonic increase versus decline. How-
ever, a logically stronger conception of invariance failure delivers
the goods. Let's replace uniform positive bias with constant positive
bias (IFcpb). If i is the probability of increase in a unit time interval
and d is the probability of decline, the result that

PrðXðt1Þ ¼ aÞ
PrðXðt1Þ ¼ cÞ >

d2i
i2d

¼ d
i
: (9**)

IFcpb says that d
i < 1; the ratio of unconditional probabilities on the

left-hand side of (9**) must be bigger than that for (9**) to be true.
Notice that the left-hand ratio in (9**) concerns the first and last
states that the first history displays, not the highest state that history
achieves, which in this example occurs in the middle of the history.

This distinction between the highest state a history occupies and
the last state the history occupies was not present in the example of
monotonic increase, but it does bear on how one should describe
what all these examples have in common:

Suppose s and e are any two states (adjacent or not) and history
H runs from X(t1)¼ s to X(tn)¼ e, so the mirror image history M
runs from X(t1)¼ e to X(tn)¼ s. Then whether H has a higher
unconditional probability than M is settled by (i) the process
model (for example, I, IFupb, IFcpb), (ii) the assumption of (for-
ward) time-translational invariance, and (iii) the value of the
ratio PrðXðt1Þ¼sÞ

PrðXðt1Þ¼eÞ.

Beyond that, it doesn't matter what the unconditional probabilities
are of the other states that the start time t1 might occupy, nor does it
matter what the absolute values are of Pr(X(t1)¼ s) and Pr(X(t1)¼ e),
and it also doesn'tmatterwhat theunconditional probabilities are for
any of the states that the other times might occupy.
5. Application to thermodynamics

The second law of thermodynamics says that entropy has a high
probability of increasing in closed systems, but it is often thought to
be relevant to systems that aren't closed (like a cup of coffee that
receives a drop of milk). The past hypothesis says that the whole
universe had very lowentropyat its birth.6 This hypothesis is relevant
towhathappens subsequently in theuniversewrit large, but it isn't so
clear how it pertains to the cup of coffee you nowhold. The third item
that needs to be considered is the fact that different histories in sys-
tems of a given type have different probabilities; for example, adding
milk to coffee always results in a homogenous liquid, butmilky coffee
never separates into an island of milk in a sea of coffee. To get these
three ducks in a row, I'll talk about relationships among three prop-
ositions that each are about systems “of type T”:

(SLT) the second law of thermodynamics: Entropy probably
increases in systems of type T.
(P) the past hypothesis: Systems of type T begin in a very low
entropy state.
(THI) two-history inequality: In systems of type T, any
possible7 history of monotonic increase
6 Albert (2000) and Loewer (2007) argue that the past hypothesis does important
work in explaining various time-asymmetries, including thermodynamic time-
asymmetries.

7 I add “possible,” since some conceivable histories of monotonic increase are in
fact impossible� for example, because systems in a given state can evolve directly
only to states that are adjacent.

8 The
needed

9 Thi
the pas
that the
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in entropy has a higher probability than its mirror-image
history of monotonic decline.
P is a nonprobabilistic statement and THI is a statement about
unconditional probabilities, but what is the logical form of SLT? I
take it to be a statement about a forward-directed conditional
probability. When t1< t2, SLT says (of systems of type T) that8

pðEntropyðt2Þ> x j Entropyðt1Þ¼xÞis high: (10)

This does not entail that

pðEntropyðt1Þ< x j Entropyðt2Þ¼xÞis high: (11)

Applied to the coffee example, SLT says that pouring milk into
coffee has a high probability of yielding a homogeneous milky
coffee, but the law does not say that homogeneous milky coffee has
a high probability of tracing back to separate coffee and milk.

I use the phrase “systems of type T00 to bring SLT, P, and THI in
contact with each other, but I won't try to provide a more infor-
mative description of what T should be. When the three proposi-
tions are formulated so that they describe different types of system,
it is left open whether they have any bearing on each other. For
example, if the past hypothesis is a claim about the early universe,
is it relevant to explaining what happens when you pour milk into
your coffee? Winsberg (2004) and Earman (2006) answer this
question in the negative.

How do SLT, P, and THI relate to the preceding discussion of
Markov processes? I stipulated at the start of the paper that I was
considering Markov processes that involve a partition of discrete
states, but proposition (10) makes it plain that SLT is about a
continuous variable (entropy). In addition, my discussion of Iord and
IFupb presupposes that there are adjacent states, but this isn't true
for a continuous variable. These problems can be addressed by
thinking about a discrete version of the SLT inwhich the continuous
variable is chunked into a large number of small intervals. Another
issue concerns whether the increase in entropy described by the
SLT has the Markov property. Does present entropy screen-off past
entropy from future entropy?9 I'll assume here that it does, though I
recognize that this assumption requires further investigation. And
what does entropy mean in SLT? The entropy I'm thinking of is
Boltzmann's.

SLT instantiates IFupb since it entails (when e> 0, e is small, and
t1<t2) that

pðEntropyðt2Þ¼ xþ e j Entropyðt1Þ¼ xÞ>
pðEntropyðt2Þ¼ x j Entropyðt1Þ¼xþ eÞ: (12)

The upshot is that the previous discussion of Markov processes can
be used to clarify how SLT, P, and THI are related to each other.

First, P and SLT are logically independent. Second, SLT does not
entail THI and neither does P, but the conjunction SLT&P does
entail THI if (forward) time-translational invariance is true. This
second point leads to the third: P is much stronger than it needs to
be. True, for SLT to entail THI, some additional assumption is
needed, but it needn't be the assumption that Pr(X(tstart)¼ xlow-

est)¼ 1. Here “xlowest” denotes a disjunction of possible entropy
point values that comprise, say, the lowest 1%. Nor is it required
that Pr(X(tstart)¼ xlowest)> Pr(X(tstart)¼ xhighest). The point about
lower-case “p(�)” represents a probability density. Also, a qualification is
here: x isn't the maximum possible value.
s question is distinct from the following: “Does present entropy screen-off
t history of the system's micro states from its future entropy?” I take it
answer to the latter question is no.

itions �Invariance under time-reversibility and its failure in
d the past hypothesis, Studies in History and Philosophy of
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R1 in the previous section shows that what is required is just that
the ratio of Pr(X(tstart)¼ xlowest) to Pr(X(tstart)¼ xhighest) not be too
small.

These facts about entailment suggest some claims about
explanation and evidence. P doesn't explain SLT, nor is the converse
true. SLT&P, if true, would explain THI (assuming (forward) time-
translational invariance), but that isn't much of an argument for
P, since a considerably weaker assumption can be conjoined with
SLT to entail (and thus explain) THI.

This skeptical comment about P (now understood as a claim
about the early universe) leaves it open that there are observations,
distinct from THI, that provide evidence for P. Indeed, an obser-
vation of the present entropy of the universe may do the trick.10 As
already noted, if y is the present entropy of the universe, then SLT
does not entail that an earlier state probably had an entropy lower
than y. However, SLT does entail that the maximum likelihood esti-
mate of the entropy of an earlier state is lower than y, given that y is
the entropy of the present state.11 That is, the point value of x that
maximizes the conditional probability density

pðEntropyðnowÞ¼ y j EntropyðbirthÞ¼xÞ (13)

is such that x< y. A step further can be taken. If you know the age of
the universe and the expected rate of entropy increase in the uni-
verse, you can determine which point value of x maximizes the
value of conditional density (13). You then can say that this point
value of the universe's entropy at its birth, coupled with the ex-
pected rate of entropy increase, explains the point value of the
universe's present entropy. Notice, however, that the proposition
thereby explained is not a proposition about time asymmetry.
Notice also that I am treating proposition P as posing an estimation
problem; I am suspicious of introducing it as a postulate that is said
to be justified on the grounds that it would explain something if it
were true. The latter approach is suspect because it fails to consider
whether alternative postulates might also explain the thing in
question.

The strategy pursued in this paper contrasts sharply with what
might loosely be termed “the Boltzmann program,” one part of
which is to explain time asymmetries in entropy histories by
postulating that higher entropy macro-states have higher uncon-
ditional probabilities than lower entropy macro-states possess. The
Boltzmann program focuses on unconditional probabilities; I've
mentioned these too, but they play second fiddle to the conditional
probabilities that I have foregrounded. As mentioned earlier, the
Boltzmann program is to develop a two-level picture, wherein the
micro-dynamics obey I (invariance under time-reversal) while the
macro-dynamics, since they obey SLT, must obey IFupb. This con-
trasts with the one-level story I have told here about the relation-
ship of SLT, IFupb, and P.

There is no conflict between these approaches if they aim at
solving different problems. I've focused on explaining asymmetries
in the probabilities of histories and their mirror images, where SLT
provides the explanation once it is supplemented with modest
assumptions about the probabilities attaching to two possible
states that the start time might occupy. Boltzmannians want to
explain why the SLT is true at the macro-level by giving a plausible
model of the probabilities that apply at the micro-level. I have
offered no objection to this project. I note, however, that explaining
10 Here I'm assuming for the sake of argument that it makes sense to attribute an
entropy to the whole universe, both in its present state and at its birth. Earman
(2006) doubts that it is physically meaningful to attribute a low Boltzmann en-
tropy to the early universe, but see Wallace (2010).
11 For an analog of this inference problem in evolutionary biology, see Sober
(2015, p. 183).
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asymmetries in histories and explaining the SLT are distinct un-
dertakings. My only beef with the Boltzmann program is the sug-
gestion that P (the Past Hypothesis) is needed to explain time
asymmetries in entropic histories. It isn't.

6. Concluding comment

The application just described of the Markov process idea of
IFupb to SLT, P, and THI has nothing special to do with the fact that
those three propositions are about the thermodynamic concept of
entropy, but I nonetheless hope that abstracting away from that
physical detail throws light on how the three propositions are
related. If the problem of “explaining thermodynamic time asym-
metries” is the problem of explaining why histories of entropy in-
crease are more common than histories of entropy decline, then
SLT is plainly relevant, but the relevance of P is less clear. Given SLT,
propositions much weaker than P about the system's initial state
suffice to explain those asymmetries. And if the problem is to
explain SLT, P does not do that, either.

The strategy of abstracting away from physical details may also
be useful in connection with the more general problem of time
asymmetry. Time asymmetries often involve properties that are not
discussed in the laws of physics (Barrett & Sober, 1994). For
example, natural selection sometimes instantiates the IFupb model,
but fitness and heritability are not discussed in physical theories.
And within physics itself, there are time asymmetries that aren't
thermodynamic (Earman, 2006). The claim that statistical me-
chanics solves “the” problem of time asymmetry embodies an un-
tenable reductionism.
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Appendix. (Backwards) time-translational invariance and its
implications

I earlier defined the concept of forward time-translational
invariance. Here's a definition for backward:

A process is (backward) time-translationally invariant for a
partition S of states if and only if, for any two states a and b in S,
for any two times t1 and t2, and for any positive integer d,
Pr(X(t1)¼ b jX(t1þd)¼ a)¼ Pr(X(t2)¼ b jX(t2þd)¼ a).

Notice that the probabilities in this definition are of the form
Pr(earlier j later).

One can't blithely assume both sorts of time-translational
invariance, since that entails that the probability distribution of
states never changes (Sober, 1993). This can be seen by applying the
odds formulation of Bayes's theorem to three adjacent times
t1< t2< t3 and two adjacent states (a and b):

PrðXðt2Þ ¼ b j Xðt1Þ ¼ aÞ
PrðXðt3Þ ¼ b j Xðt2Þ ¼ aÞ¼

PrðXðt1Þ ¼ a j Xðt2Þ ¼ bÞ
PrðXðt2Þ ¼ a j Xðt3Þ ¼ bÞ$

PrðXðt2Þ ¼ bÞ
PrðXðt3Þ ¼ bÞ :

(14)

If (forward) time-translational invariance holds, the ratio on the
left-hand side equals 1. If (backward) time-translational invariance
al conditions �Invariance under time-reversibility and its failure in
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holds, the first ratio on the right-hand size equals 1. So, if both
invariances hold, the second ratio on the right-hand side equals 1.
This applies to all the possible states the system might occupy, and
to all subsequent times. So for each state, the unconditional prob-
ability of the system's occupying that state doesn't change with
time after t2. This means that forward and backward time-
translational invariance are incompatible for a system that has its
states change probability with time.

I already described what IFupb entails about the probabilities of
monotonic increase and monotonic decline when the forward
version of time-translational invariance is assumed. If you shift to
the backward version, there are parallel consequences for IFupb. The
(7*) inequality, which uses forward-directed probabilities, can be
rewritten in a logically equivalent form that uses backward-
directed probabilities, as follows (where a<b< c and the three
states are adjacent):

PrðXðt3Þ ¼ cÞ,PrðXðt2Þ ¼ b jXðt3Þ ¼ cÞ,PrðXðt1Þ ¼ a jXðt2Þ ¼ bÞ>
PrðXðt3Þ ¼ aÞ,PrðXðt2Þ ¼ b jXðt3Þ ¼ aÞ,PrðXðt1Þ ¼ c jXðt2Þ ¼ bÞ:

(15)

A rearrangement of (15) that parallels what I did earlier for (7*)
yields a necessary and sufficient condition for the truth of (15),
namely that

PrðXðt3Þ ¼ cÞ
PrðXðt3Þ ¼ aÞ (16)

not be too tiny. This ratio needn't be greater than one, though that
suffices.

Moving from the three times in our running example to n times,
it gets easier and easier for a history of monotonic increase to be
more probable than a history of monotonic decline as n increases.
Assuming (backward) time-translational invariance, the criterion
for IFupb to entail THI in a history that spans n times is that

ðR2ÞPrðXðtnÞ ¼ xnÞ
PrðXðtnÞ ¼ x1Þ

not be too small. This requirement gets easier and easier to satisfy
as n increases. Notice that R2 describes states of the end time, not
states of the start time, and the biggest value for X(tn) appears in
the numerator, not the denominator.
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In summary, if IFupb is true, then THI is true under each of two
assumptions: (i) there is (forward) time-translational invariance
and the R1 ratio isn't too small, and (ii) there is (backward) time-
translational invariance and the R2 ratio isn't too small.
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